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Abstract:  

 In recent years, healthcare systems have been experiencing increasing budgetary distress. In 

an era of cost containment, the need to construct rational processes for allocating scarce health 

resources is becoming more acute. The assessment of estimated effectiveness has a pivotal role 

in avoiding inefficiencies and optimizing resource allocation processes. Randomized 

Controlled Trials (RCTs) are considered the “gold standard” in clinical research to evaluate the 

effectiveness of medical products. As such, findings obtained from RCTs are perceived as vital 

sources of evidence for informing policymakers in the context of drug regulation in general 

and reimbursement decision-making in particular. 

However, recently some have questioned the traditional approach of evaluating evidence for 

drug regulatory processes and the role assigned to RCT evidence within it. To encourage the 

rethinking of current practices, however, it is important to understand both the epistemic 

qualities of RCTs and the actual use of them in the context of clinical effectiveness evaluation 

processes. With this objective in mind, the aim of this thesis is to investigate the role of RCT 

evidence in drug reimbursement decision-making, while ultimately arguing that policymakers 

may benefit from the incorporation of Bayesian thinking into clinical evidence assessment 

processes. Recognizing the interdisciplinary nature of the issue discussed in this thesis, this 

work brings together various perspectives and combines several methodological approaches, 

using both philosophical inquiry and empirical analysis tools. 
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Introduction 

"The practice of medicine is an art, based on science. Medicine is a science of uncertainty 

and an art of probability." ~ Sir William Osler 

In recent years, healthcare systems have been experiencing increasing budgetary distress. This 

challenges the ability of public health systems to provide their citizens with high quality, 

equitable, and affordable services. In an era of cost containment, the need to construct rational 

processes for allocating scarce health resources is becoming more acute. The assessment of 

estimated effectiveness has a pivotal role in avoiding inefficiencies and optimizing resource 

allocation processes.  

Randomized Controlled Trials (RCTs) are considered the “gold standard” in clinical research 

for evaluating the effectiveness of medical products. As such, findings obtained from RCTs 

are perceived as vital sources of evidence for informing policymakers in the context of drug 

regulation in general and reimbursement decision-making in particular.  

However, recently some have questioned the traditional approach of evaluating evidence for 

drug regulatory processes and the role assigned to RCT evidence within it. First, in some cases, 

the conducting of RCTs may be impossible or unethical. Those cases are becoming more 

common as the development of personalized treatments is gaining influence in medical 

practice. At the same time, advances in information technology are expanding the range of 

non-RCT evidence available for informing and supplementing medical research.  

The trends described above call for a reconsideration of the role of RCT in drug evaluation 

processes. However, to stimulate a rethinking of the current practices it is important to 

understand the epistemic qualities of RCTs as well as the configurations of the actual use of 

this evidence in the context of clinical effectiveness evaluation processes. With this objective 

in mind, the aim of this thesis is to investigate the role of RCT evidence in drug reimbursement 

decision-making while ultimately arguing that policymakers may benefit from the 

incorporation of Bayesian thinking into clinical evidence assessment processes.  

The evaluation of clinical evidence for drug reimbursement decisions lies at the intersection of 

multiple areas of knowledge. As such, a thorough investigation of this issue requires the 

incorporation of different points of view. Recognizing the interdisciplinary nature of the issue 

discussed in this thesis, several methodological tools were combined to bring together various 

perspectives; these refer to both normative and descriptive considerations. The normative 

evaluation includes philosophical inquiry into the epistemic qualities of RCT in general and 
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their role in policy decisions in particular. This normative investigation builds upon the 

literature in the fields of decision theory and the philosophy of science. At the descriptive level, 

methods and analytical tools from the field of public policy and health economics were applied 

to investigate the existing practices and their significance in the broader context of drug 

regulation. In light of the above, I hope this study will serve as an example of how exploring 

policy problems may stimulate philosophical inquiry that is more connected to real-world 

problems on the one hand, and that it will highlight the potential contribution that may arise 

from incorporating the philosophical perspective into thinking about policy issues on the other. 

Outline of the Thesis:  

The structure of this thesis is as follows: In the first chapter, we provide background 

information and set the normative foundation of the discussion of RCTs. Within this context, 

we briefly introduce the principles of the Evidence-Based Medicine (EBM) approach and the 

role of RCT evidence within it. Based on this review, we turn to a normative exploration of the 

epistemic benefits attributed to the RCT method in supporting clinical effectiveness claims 

while discussing its limitations. 

The second chapter is descriptive and offers an examination of the role of RCT evidence as 

reflected in actual drug reimbursement decisions; this is done using a mixed-logit model while 

assessing the relationship between actual policy and the stated policy. 

The third chapter is an integration of the findings of the two previous sections, harnessing the 

insights formulated in the first chapter to critically evaluate the findings of the second. This 

chapter begins by presenting an investigation of the characteristics of the decision problem of 

clinical effectiveness from a decision-theoretical perspective. Equipped with a better 

understanding of the challenges emerging from the decision problem at hand, we turn to 

examine the use of the Bayesian approach as a possible pathway for addressing these 

challenges while discussing both the opportunities and shortcomings associated with it. 

I deeply thank my advisors, prof. Raanan Solizeanu-Kenan and Dr. Ittay Nissan-Rozen for 

their helpful and insightful comments and guidance, and for endless support and patience.
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CHAPTER I 
 

"That all science is a description and not explanation… For science cause is meaningless, The aim 

of science ceased to be the discovery of ‘cause’ and 'effect'; in order to predict future experience it 

seeks out the phenomena which are most highly correlated " ~ Karl Pearson  

“No causality in, no causality out” ~ Nancy cartwright  

This chapter provides a general background and sets the conceptual ground for this thesis. The 

discussion presented in this section begins by reviewing the development of the Evidence-

Based Medicine (EBM) movement, and by outlining the principles underlying it. From this, 

we will turn to a normative evaluation of the role of Randomized Controlled Trials (RCT) in 

EBM, considering both the epistemic advantages and limitations attributed to it. This 

discussion will set the foundations for the descriptive investigation concerning the role of RCT 

evidence in drugs' reimbursement decision-making processes, as reviewed in chapter 2, as well 

as to the problem of weighting of evidence of different types, that is discussed in chapter 3. 

1.1 Evidence-Based Medicine 
 

1.1.1 Brief History  

Evidence-based medicine (EBM) is considered one of the most important movements in the 

domain of medicine in the past century. The rationale underlying it is defined in the literature 

as: “the conscientious, explicit, and judicious use of current best evidence in making decisions 

about the care of individual patients” (Sackett, 1996). As a social and ideological movement, 

EBM has been evolved in light of continuous dissatisfaction from the inference mechanisms 

and reasoning tools used by the medical community in the period preceding its emergence. 

Against this, EBM proponents have strived to rationalize medical decision-making processes, 

so as to ensure a more effective, efficient and "scientific" clinical practice and care. Looking 

back, it seems that this attempt has succeeded beyond expectations. Since its emergence, EBM 

has remarkably reconfigured our understanding of clinical knowledge formation processes and 

clinical research, reshaped the delivery of medical practice and profoundly influenced health-

related policymaking, all in accordance with rigorous empirical standards. 

While the EBM movement has historically evolved in the late twentieth century, many claims 

that its roots can be traced much earlier. The figure most associated with the evolvement of the 

paradigm is the Scottish physician Archibald Cochrane (1909-1988), who is sometimes 



6 

 

referred to as the “Father of EBM”.1  In his seminal 1972 monograph “Effectiveness and 

Efficacy: random reflection on health services”, Cochrane strongly criticized the medical 

establishment of his time, and the British NHS in particular, in light of three parameters 

(‘yardsticks’): effectiveness, efficacy, and equality. Within this manifest's framework, the main 

critique presented focused on medical education and decision-making processes, in relation to 

evidence assessment. In his pioneer discussion on effectiveness, Cochrane demonstrated, by 

citing various studies, how the common then-contemporary medical practice is based on 

approximations, unfounded hypotheses, and inferior evidence. Hence, Cochrane concluded 

that the medical research and practice of his time are inherently flawed and called for a reform 

in both the type of evidence used by the medical world and in the decision-making protocols. 

In particular, Cochrane highlighted the superiority of RCT evidence over other types of 

evidence and stressed the importance of enhancing the production and accessibility to evidence 

of this type. (Masic et al., 2008; Hill, 2000) 

While Cochrane's ideas had become increasingly popular in the years that followed, it was not 

until the mid-1990s that the official institutionalization of EBM took place, and the term 

“Evidence-Based Medicine” was first coined. The event that marks the evolution of EBM as a 

standardized and influential movement in the scientific medical community was the 1992 

gathering of the Evidence-Based Medicine Working Group. Following this meeting, the 

participants published a manifest (later known as the “JAMA paper”) opening with the 

following statement: "A new paradigm for medical practice is emerging. Evidence-based 

medicine de-emphasizes intuition, unsystematic clinical experience and pathophysiological 

rationale as sufficient grounds for clinical decision making and stresses the examination of 

evidence from clinical research." (Evidence-based medicine working group 1992, p. 2420). 

Over time, various institutions and structures have evolved in light of EBM’s vision, intending 

to spread and implement its fundamentals as an integral part of the “normal” medical science. 

The most prominent among these organizations is the 'Cochrane Collaboration', founded in 

1993 as a not-for-profit international organization aiming at creating and promoting the 

accessibility of up-to-date, systematic, high-quality evidence of various medical intervention 

and practices. Another manifestation is the formulation and publication of guidelines based on 

EBM principles. Those guidelines have become an integral part of the medical practice. Some  

 
1 While many Others attribute the development of EBM to David Sackett, therefore referring to Cochrane as the 

“Grandfather of EBM”.  
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of those are published by government agencies and used as an influental, binding regulatory 

tool (Masic et al., 2008).  

1.1.2 The underlying principles of EBM 

Notwithstanding, to fully grasp the significance and transformative force of the EBM paradigm 

in the medical field, it is essential to be more precise and detailed about the nature of this 

approach. In particular, the characteristics, assumptions, and principles governing this 

paradigm must be examined. Such an investigation will allow for a critical assessment as to 

the degree of alignment between the objectives of EBM, the tools that it is applying, as well as 

the extent of its translation into actual policy. 

First, it is essential to note that the term “Evidence-Based Medicine” is used in the literature 

in two distinct meanings, at two different levels. The first usage pertains to the micro-level. 

That is, to the local, physician-patient relationship that addresses decision-making for the 

individual patient. In contrast, the second usage concerns the macro, policy-level regulatory 

decision-making processes. As will become evident below, it is only the second type of use 

that will be of interest in this thesis.  

Second, it is crucial to understand in what sense the use of EBM has brought about a conceptual 

and practical change. On the face of it, the mere claim that medical decision making should be 

anchored in evidence sounds almost trivial and at the very least undisputable. In this regard, it 

is important to note that the medical establishment in the modern era, even preceding the 

development of the EBM approach, sought to rely on scientific evidence.  However, the 

element that makes EBM informative and innovative - and at the same time controversial - 

related to the way that this approach understands the concept of evidence, as well as the 

relationship between different types of evidence in decision-making processes. As mentioned 

above, EBM refers to the use of the ‘best evidence’ in clinical decision making. That is, its 

underlying assumption is that, by design, “not all evidence is created equal”, and that some 

evidence is “better”, in a strong sense, comparing to others.  

 This latter idea is manifested through the formulation of "evidence hierarchy", which ranks 

different types of evidence by their perceived "quality". This structure is sometimes referred to 

as “The fundamental principle of EBM” (Montori & Guyatt, 2008, p.10). The “evidence 
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hierarchy” is visually represented in the shape of a pyramid that places different types of 

evidence on a single-dimensional uniform scale, based on their epistemic merits. 2 

 
Figure 1.1: The pyramid of evidence (Yetley et al., 2016) 

 

The pyramid of evidence is constructed and applied based on lexical reasoning, in the sense  

that “higher” evidence (evidence that is perceived as superior in terms of their quality) 

dominate evidence that is placed “lower” in the pyramid (that is, inferior quality evidence).  It 

should be noted that the term  “quality” of evidence in this regard refers mostly to the perceived 

resistance of the method of inference and study design to biases and confounders (Griffiths, 

2011).  The relationship between such biases and different types of evidence in the hierarchy 

of evidence is discussed below, in section 3. 

At the very top of the traditional evidence-pyramid are filtered or synthesized evidence, 

extracted from meta-analysis and systematic reviews of RCTs.3 Those are followed by 

evidence from unfiltered RCTs. At the next level there is non-RCT evidence from cohort 

studies, evidence from controlled observational trials, and evidence from uncontrolled 

observational trials, all of which conceived as inferior comparing to RCT evidence. At the 

bottom of the pyramid evidence from case reports, theoretical mechanistic studies, and expert-

 
2 In recent years, few attempts were made to formulate new hierarchies of evidence, so that it would reflect the 

complexity and multi-level of consideration that needed to be considered once evaluating evidence in different 

contexts (e.g., Murad et al., 2016 ; Petrisor & M Bhandari, 2007, GRADE working group, 2013).   

3 Following Guyatt et al (1998) and Atkins et al., (2004) , meta-analyses and systematic reviews would be regarded 

in this work as a method for integrating evidence, that is – a method of using the hierarchy of evidence - rather 

than as evidence in themselves.  
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opinions are placed.4 To avoid attacking a straw-man, it is important to note that the hierarchy 

of evidence does not serve as a sole determinant of decision-making guided by EBM principles, 

but nevertheless is “an important component and may be the defining component.” (Vere, 

2019) in evidence evaluation within it. It is also essential to highlight that there is no single 

agreed representation of the hierarchy of evidence in the literature (West el al., 2002 ; 

Goldenberg et al., 2009, Vere, 2018).  Nevertheless, despite the wide variation observed, the 

ranking of RCT evidence at the top of the pyramid is a shared property of most representations. 

This makes RCT the conventional “gold standard” of medical scientific evidence (Vere, 2018). 

The remainder of this chapter is dedicated to the examination of the unique role of RCT 

evidence in the EBM framework. As a preliminary step, we provide a brief review of the basic 

element of RCT study design. Subsequently, we will turn to a philosophical analysis of the 

epistemic force attributed to this type of evidence. This normative discussion will, on the one 

hand, acknowledge the evident benefits of using RCTs as an inference tool for minimizing 

potential biases. However, at the same time, the limitations of RCT on various levels would be 

discussed. The ultimate conclusion to be derived from the discussion, therefore, will challenge 

the sharp dichotomy underlying the EBM's evidence hierarchy, and thereby will question the 

role assigned to RCT evidence vis-a-vis other evidence within it. 

The process of conducting randomized controlled trials  

In an RCT study design, a homogenous group of participants corresponding to the target 

population is being recruited, based on well-defined inclusion and exclusion criteria, which are 

set a-priori. Subsequently, the patients’ population is randomly assigned into two mutually 

exclusive and exhaustive groups: the first group is the treatment group or the experiment group, 

receiving the treatment whose effect that is sought to be tested; the second is a control group, 

receiving an alternative conventional treatment, or placebo treatment (that is, a substance with 

no biochemical benefit). Alongside these,  RCT study design often involves blinding - meaning 

that neither the study subjects nor the researchers (in Single-Blind study design) or both (in 

Double-Blind study design) are aware of the allocation.  

 

4 The lexical use of the hierarchy of evidence, and the unique role of RCT in this framework can be exemplified 

by the following advice, appearing in a 2005 EBM handbook, discussing improving medical education thought 

EBM principles: “If the study wasn’t randomized, we’d suggest that you stop reading it and go on to the next 

article in your search. (Note: We can begin to rapidly critically appraise articles by scanning the abstract to 

determine if the study is randomized; if it isn’t, we can bin it.) Only if you can’t find any randomized trials should 

you go back to it”. [Straus et al., 2005, p.118]  
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 Figure 1.2: Describing the process of randomized controlled trials  (Kendall JM, 2003) 

 

In the final part of the study, the analysis part, the effect of the medical treatment given to each 

group is compared. The averaged difference in outcomes between the two groups is considered 

the treatment effect. (Kabisch et al., 2011). 

RCTs are usually conducted as phase III clinical trials. The traditional division of clinical trials 

consists of four phases (that in some instances may be combined): In phase I the tolerance, 

metabolism, and interaction of the drug under investigation are being assessed; phase II 

includes the examination of dose respondent and limited efficacy, based on biomarkers as 

outcomes and a small population of patients. The aim of phase III trials is to confirm clinical 

efficacy at a larger scale and to establish safety. Trials seeking to examine the drug in a broader 

(or alternatively special) populations, while detecting uncommon adverse events, are phase IV 

trials (Friedman et al., 2010).  

Non-RCT study designs are titled ‘observational studies’. The set of observational studies is 

characterized by non-experimental study design, and include diverse inference methods, such 

as (but not limited to): Historically controlled studies (comparing present group receiving a 

treatment to a similar group receiving different treatment or no treatment); Cohort studies 

(longitudinal studies following group of patients receiving treatment over time. Cohort studies 

may be prospective, or retrospective), Cross-sectional studies (non-comparative trials studying 

a population at a given point in time). The data used in observational studies is extracted from 

various sources, ranging from data utilized from active observations, to registries or 
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administrative data. The latter sources of data sources are sometimes referred to in the literature 

as “Real-World Data” (RWD). 5 

After reviewing out the descriptive elements, we now turn to a more in-depth philosophical 

discussion of these biases, and accordingly of the benefits of using the RCT method as an 

inference tool for formulating clinical knowledge. 

1.2 The Epistemic Power of RCT Evidence 

1.2.1 Correlational and Mechanistic Knowledge  

First, to set the foundations for the discussion in this section, we start by distinguishing two 

‘types’ of medical knowledge: mechanistic knowledge on the one hand and correlational 

knowledge (or statistical knowledge) on the other hand. The first type of knowledge, the 

mechanistic knowledge, is based on a theoretical understanding of the mechanism that 

establishes the causal link between two variables. This type of knowledge, therefore, provides 

an answer to “how?” And “Why?” questions, and is usually derived from basic science 

research. Correlational knowledge, on the other hand, is based mostly on statistical reasoning. 

This model of knowledge is grounded in the use of a reliable mechanism, in the sense that it 

enables us to predict with a high probability the occurrence of some result in light of another 

phenomenon. While in the formation of correlational knowledge certain outcomes of an 

interaction between two variables can be justifiably expected, we remain ignorant as to the 

causal mechanism that establishes the relationship observed. Therefore, this kind of knowledge 

does not provide us with an explanation6 (or at the very least, not with a causal explanation) 

as to the observed occurrences. 

The variety of biological processes in the human body are interacting as part of a complex 

system. Acknowledging this complexity, clinicians and researchers traditionally refrain from 

claiming for comprehensive or even sufficient knowledge as to the mechanism underlying the 

operation of the human body.  This perspective is a product of long historical experience, in 

both past and present, that indicates that often even when there was a strong sense of 

understanding of the causal mechanism underlying biological interaction, when this theoretical 

logic has been translated into actual medical applications, the observed results turned out to be 

inconsistent with our so-called well-established theory-based prediction. 

 
5 for an elaborated discussion on the definition and use of RWD see Makady (2017).  

6 For a detailed review of different accounts of causality and explanation in medicine see: Steel, 2011.  
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A recent example can be provided from the sphere of Alzheimer's Disease (AD) research. In 

recent years continuing progress in the field of neuroscience and biochemistry gave rise to the 

development of advanced potential technologies for treating AD, thereby giving patients 

around the world a cause for optimism. One of the most promising treatments that were 

developed was Aducanumab. This monoclonal antibody, presented by pharmaceutical 

company Biogen Inc., was based on an assumed understanding of the contribution of beta-

Amyloid protein in forming plaques in the brain. This protein builds up at the early stages of 

the disease, so its activity was thought to compromises nerve cells, thus causing (or so it was 

thought) confusion and memory loss. However, after successful phase I and II trials, in March 

2019, the company has announced halting two phase III trials testing Aducanumab, this due to 

insufficient observed effect (Selkoe, 2019). The case of Aducanumab serves as just one painful 

reminder of the unexpected gap between the theoretical understanding - that many times is 

considered well-established - and the disappointing results in its applications for actual 

treatment.7 

In light of the skeptical attitude toward claims for a mechanistic understanding of biological 

processes, the knowledge that EBM seeks to establish is correlational rather than purely 

mechanistic. The epistemology on which it is grounded, therefore, is reliabilist rather than 

evidential. That is to say that it is anchored by the method used and not directly by the evidence 

in themselves. So, while the process of producing medical knowledge in the early 20th century 

was largely focused on basic science and mechanistic theoretical assumptions8, the growth of 

the EBM movement can be seen as a return to the empiricist roots of formulating medical 

knowledge (Gifford, 2011). Using Newton's (2001) words: “for all its rhetoric of novelty, 

Evidence-Based Medicine represents a counter-revolution of traditional empiricism, draped in 

modern clothes of statistics and multi-variate analysis” [p. 314]. 

To avoid misunderstanding, however, we should stress that theoretical knowledge plays a vital 

role and is widely used in the clinical research process during the development of the 

 
7 This is not to say, however, that Amyloid is not causally connected to the development of AD. That is, those 

findings only indicates that the current mechanistic understanding of its role in the development in the complex 

structure of the development of the disease is inadequate.  And indeed, in 22 October 2019, Biogen had announced 

that in light of findings from later sub-analysis of the data, it would seek FDA approval for Aducanumab.(Abbott, 

2019). To this day, the question of whether the FDA should approve the drug is still hotly debated, and is 

considered by some "the most important decision’ the FDA will make in 2020". (Lovelace, 2019).   

8 The most influential manifest contributing to the rise of the theoretic-based rationalist school in North America 

in the early 20th century was the Flexner report, written by Abraham Flexner and published in 1910 and calling 

for emphasizing subjects such as physiology, anatomy and microbiology in modern medical education.  
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intervention and the formulation of the hypothesis. In this sense, such  knowledge may be 

confirmed or refuted in light of the experiment results. However, the inference process in itself, 

as it is perceived by EBM proponents, seeks to predict the effect of the treatment while 

minimizing the reliance on theoretical knowledge. 

1.2.2  Correlational Knowledge and Confounding Effects  

The acknowledgment of our lacking mechanistic understanding has not only established an 

empiricist shift in the medical realm, but also shaped the normative assessment as to the 

appropriateness of various tools for formulating medical correlational or statistical knowledge. 

Specifically, this attitude explains the salient dissatisfaction of the medical establishment with 

relying on observational studies as evidence for effectiveness evaluation. This results from the 

fact that, in the absence of an understanding of the mechanical process governing the 

relationship, a mere correlation between two variables - the treatment and the observable effect 

– cannot support the existence of a causal relation. This is because by merely observing an 

effect, the presence of a third, confounding variable invoking a similar outcome cannot be ruled 

out. That is, there may be an unknown variable that is unequally distributed between 

participants, and has an impact on the measured outcome but is nevertheless not part of the 

causal pathway between the independent and dependent variable (Jager et al., 2008).  

Occasionally, the presence of an unknown confounding variable may mask an existing 

relationship between the two variables of interest. In those instances, the correlation between 

the two variables wouldn't be observed, even though they are indeed causally connected (thus 

producing false-negative results). Alternatively – in what is presumably a more common 

scenario - a third variable may bring about a false representation of the causal relationship 

between two variables, when such a relationship does not exist (thus producing false-positive 

results). In particular, there is a significant concern that the exposure to treatment is correlated 

in the first place with characteristics that affect the desired outcome. This worry is especially 

evident in health-related policy-level decisions.  

When a theoretical background knowledge of the causal mechanism exists, confounding 

variables can be identified and controlled for (either in during the study design or in the 

statistical analysis stage). However, in the absence of a complete theoretical knowledge of a 

mechanism to identify the intervening variables that are otherwise unknown, it is not possible 

to justifiably draw a warrant causal link between the treatment and the effect. 
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1.2.3 The Epistemic Strength of RCTs 

Considering the above distinction, we will now turn to characterize the epistemic advantage of 

using RCT as a tool for establishing reliable correlational knowledge. In particular, we would 

argue that RCT advocates perceive it as a tool that makes it possible to deduce a causal 

connection without requiring theoretical, mechanistic knowledge. That is, without turning to a 

type of knowledge that is not available to us. To substantiate this argument, we will use Nancy 

Cartwright's (2007a, 2011) distinction between two types of scientific experiments: 

experiments that are "clinchers" and experiments that are “Vouchers". In trials of the first type, 

the clinchers, once the experimental tool is correctly applied, and the assumptions underlying 

the experiment are met, then the causal relationship between the variables in question are 

deductively derived from the result obtained by the experiment. In contrast, in trials of the 

second type, the Vouchers, the result obtained supports the causal relationship between the 

variables probabilistically but is not guarantee it (Cartwright, 2007a). 

Under this conceptualization, RCTs are identified as clinchers. However, Cartwright notes that 

RCT is not the only tool of this sort. In econometric analyses, for example, the causal relations 

can be derived deductively from the result obtained by the estimators as well, provided that the 

assumptions of the model are met. Nevertheless, RCTs still has a unique epistemic power vis-

à-vis other clinchers, since the assumptions underlying its use are validated by the structure of 

the research design itself. That is, in contrast to econometric models, the assumptions 

underlying the use of RCT are satisfied by construction. To clarify this point, we shall turn to 

examine the function of the fundamental elements composing the structure of RCTs. 

The most significant assumption for deriving a causal conclusion in RCT study design is given 

by the epistemic device of randomization. This assumption concerned the balanced distribution 

of confounders between the two groups – the control group and the treatment group. Given that 

the two groups come from the same distribution, the process of randomization renders that in 

expectations (we will come back to this feature later), both known and unknown confounders 

are equally distributed between the two groups.  

As mentioned above, the failure to control for unknown confounders is the main barrier for 

tracing causation and establishing a prediction in accordance. Let 𝑡1 be therapeutical treatement 

ans 𝑡0 no treatment. A correlational relationship between treatment 𝑡1 and an outcome 𝑂 is 

obtained iff the probability of obtaining the outcome is greater given the treatment, compared 

to the probability of obtaining the outcome without treatment 𝑝(𝑂│𝑡1) > 𝑝(𝑂│𝑡2). 
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Nevertheless, as long as potential confounding factors (Z) are not controlled for, a causal claim 

supporting a prediction cannot be derived from this mere correlation. While some of the 

intervening factors are known and observable and thus can be controlled for indeed, provided 

our incomplete mechanistic understanding other remain unknown.  

Let (𝑧𝑗
𝑘 ∈ 𝑍)  be known confounders and (𝑧𝑖

~𝑘 ∈ 𝑍) be unknown confonders. Randomization 

renders that in expectation the confounders are identically distributed between the treatment 

(𝑡1) and control group (𝑡0), so that 𝐸(∑ (𝑧𝑖
𝑘, 𝑧𝑗

~𝑘  )𝑖,𝑗=1…𝑛 , 𝑡𝑜) = 𝐸(∑ (𝑧𝑖
𝑘 , 𝑧𝑗

~𝑘  )𝑗=1…𝑛 , 𝑡1). 

Holding the confounding factors fixed in expectation between groups would allow for deriving 

the treatment effect, as no other explanation for the occurrence of the difference in outcome 

can be provided, apart from the intervention alone. That is, given that the treatment effect is a 

linear combination of the treatment effect (𝛽1) and the confounding effect (𝛽2), where 

treatment is a dummy variable: 

  (𝑂𝑡1
̅̅ ̅̅ − 𝑂𝑡0

̅̅ ̅̅ ) = [𝛽1 ∙ (1 − 0)] + 𝛽2 ∙ (∑ (𝑧𝑖
𝑘, 𝑧𝑗

~𝑘  , 𝑡1)𝑖,𝑗=1…𝑛 − ∑ (𝑧𝑖
𝑘 , 𝑧𝑗

~𝑘  , 𝑡0)𝑖,𝑗=1…𝑛 ) 

Since the second argument equals zero we are left with an unbiased estimator of treatment 

effect alone :  (𝑂𝑡1
̅̅ ̅̅ − 𝑂𝑡0

 ̅̅ ̅̅ ̅) = 𝛽1.  

The above structure suggests that randomization eliminates the effect of the intervening 

variables and thus allowing for the isolation and extraction of the causal relationship between 

the treatment and the observed outcome alone. The balancing assumption is crucial in this 

context since it allows us to assume that the dispersion of confounders is fixed in expectation 

across the groups being compared. This holds not only for the known confounders but also for 

the unknown confounders. Thus, the main advantage of the RCT method is that it does so 

without having to identify the unknown confounding variables. That is, without relying on the 

kind of knowledge that we do not have access to. 9 

All in all, the structure presented above establishes the distinctive epistemic power attributed 

to RCT. The application of this tool enables us to "bypass" (or so does it seems) the problem 

stemming from our insufficient mechanistic understanding while alleviating the concern of the 

influence of unknown confounding variables. This way, a causal conclusion can be established 

 
9 It should be noted that in a non-RCT study design different methods are used for dealing with confounder factors, 

among others: matching, restriction and stratification. However, these methods are usually considered inferior to 

randomization, as they all rely on substantial prior knowledge and are applicable only to known confounders. For 

further discussion see Jager et al., 2008.  
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independently of our (lacking) theoretical knowledge. That is, we can reliably predict the 

treatment effect without answering “how” and “why” questions. 

So far, we referred to concern regarding bias stemming from lack of knowledge as to possible 

unknown confounders (“epistemic concerns”). However, RCT study design is designated to 

address another type of concerns. Those are associated with psychological effects that may 

distort the experimental results (“psychological concerns”). To counteract the effects of these 

biases, rigorous RCT study design involves, along with randomized allocation, some additional 

features: Placebo or active comparator is used to control for possible impact that awareness of 

treatment itself, regardless of its therapeutic effectiveness, may have on the outcome. In the 

same fashion, a masking strategy (blindness) is applied to reduce possible cognitive biases of 

either researchers or participants, resulting from knowledge about the allocation. While the two 

types of concern – the epistemic and the psychological – aimed at the same object of reducing 

bias, it is important to distinguish the two, since their roots, the type of tools used for addressing 

them, as well as the weight that is given to them in evaluating the quality of evidence, is 

distinctive. 

To sum up this section, under relatively minimal assumptions RCT provides an unbiased 

estimator and therefore, it may be suggested, has rightfully taken its place as the "gold 

standard" of the evidence hierarchy. However, in recent years, a growing body of literature has 

been suggesting to widespread misconceptions as of the mechanism underlying RCT and hence 

pointing to an underestimation of its limitations (e.g., Cartwright & Deaton, 2016, 2018; 

Cartwright, 2011; Worrall, 2007; Worrall, 2011). The discussions in the literature can be 

classified into three categories: (1) Arguments concerning the use of RCT's as an inference 

mechanism establishing unbiased estimation of treatment effect; (2) Criticism of the 

interpretation of RCT's results and their generalizability for policy-purposes. (3) Descriptive 

discussions pointing to a discrepancy between the actual use of RCT in medical trials and the 

“ideal” RCT. In accordance with this classification, in the following section each of these 

discussions shall be reviewed and assessed. 

1.3 The Limitations of the RCT Method  

1.3.1 RCT as an Inference Mechanism: 

Unbiasedness and precision  

In discussing the benefits of RCT compared to other research methods, the unbiasedness of the 

estimate provided by RCT is often used as a central argument for its superiority. However, in 
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their seminal paper on RCT of 2016, Deaton and Cartwright emphasize the distinction between 

the unbiasedness of the estimator provided by the RCT design and the precision of such an 

estimate. While unbiasedness is obtained when the gap between the expected value and the 

true value (i.e., the bias) equals to zero, precision is related to the absence of random error. 

Quoting Deaton and Cartwright (2018): “An archer who misses two feet to the right half of the 

time and two feet to the left half of the time is shooting unbiased arrows but never hits the 

target” [p.5, emphasis in original]. Therefore, to be considered accurate, an estimator should 

be both unbiased and precise. As a matter of fact, the estimator provided by well-conducted 

RCT may meet the former condition by construction (at least for the sample population)10, but 

in many cases, it may fail to meet the latter.  11 

The unbiasedness of the RCT method 

On top of the above, some have questioned the extent to which RCT, as it is being applied in 

clinical trials, does indeed provide an unbiased estimate. In this discussion, the assumptions 

related to the allocation plays a crucial role.12 As suggested in the previous section, 

randomization renders that the difference in other intervening factors equals zero in 

expectation. This means that in repeating randomization infinite times over the same sample, 

the estimated average treatment effect to be received from the trial would equal the “true” 

average treatment effect in the population (Deaton & Cartwright, 2016). In this sense, 

unbiasedness is a frequentist concept.  In clinical trials, however, randomization is not repeated 

but conducted only once (more specifically, it cannot be repeated, at least not on the same 

 
10 The unbiasedness proof in RCT depends on the linearity of the operators. Thus, while sometimes we are 

interested in the variance or the median treatment effect, the only unbiased estimator that can be provided by 

this method is the mean (that is, other statistics can be assessed only under stronger assumptions). 

11 To stress the last point, a closer look at elementary statistics may be helpful. Indeed, unbiasedness is a desirable 

feature of an estimator, in the sense that when other things are equal, we would prefer an unbiased estimator to a 

biased one. Nevertheless, other features may as well be desirable, assuming that our ultimate goal is to provide a 

warrant statistical analysis in which the divergence from the ‘true’ parameter or interested is minimized. This 

divergence  can be represented mathematically by the concept of mean squared error (MSE), calculated as the 

sum of the variance error and the squared bias: 𝑀𝑆𝐸(θ̂) = 𝑣𝑎𝑟(𝜃̂) + (𝑏𝑖𝑎𝑠(𝜃̂, 𝜃)
2

) + 𝜎𝑒
2 = 𝐸𝜃̂ [(𝜃̂ −

𝐸𝜃̂[𝜃̂])
2

] + (𝐸𝜃̂[𝜃̂] − 𝜃)
2

+𝜎𝑒
2 . This formula imply to a trade-off between the variance error (that is, error that is 

related to variability in the result of the model given a change in dataset) and error due to bias (i.e., expectation 

of error in the prediction of the model due to assumptions underlying it), in what is known in the literature as the 

bias-variance dilemma. Thus, under certain circumstances, we will be willing to trade some unbiasedness to 

reduce the variance. That is, we cannot prefer RCT to other methods just because the estimators provided by it is 

unbiased.   

12 In keeping with the most prominent literature in the field, the discussion here focuses on the element of 

randomization. However, attention was drawn also to other features of classical RCT. Howick (2008, 2011), for 

example, review the limitation of masking as well, but this element would not be discussed here.   
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population, or for a sufficient number of times). Unfortunately, in one-time randomization a 

balance between the two groups cannot be guaranteed.  

 As indicated by Worrall (2002, 2007, 2011), In many instances, after one-time randomization, 

the known covariates turn out to be unbalanced between the two groups once checked. For 

example, frequently, an unbalanced distribution between men and women in allocation is 

observed. In such instances, the researchers will initiate adjustments in the assignment, or re-

randomized, so as to reach an appropriate balanced distribution of sex – a factor that is known 

to play a causal role in many cases -  between the groups. An alternative possible solution 

would be to stratify the sample based on the known intervening variable proceeding the 

randomization process.13 Indeed, many published RCT papers are summarizing the results of 

baselines tests of significance to determine covariates and review the method used for dealing 

with them.  

Yet, if one-time randomization does not guarantee a balanced distribution of known observable 

confounders between the groups, it seems that we have no reason to believe that it produces an 

even distribution when it comes to unknown confounders. Unfortunately, when potential 

unknown confounders are involved it is not possible to amend the randomized allocation or to 

adjust the analysis for the sake of achieving a better balance. This implies that the assessment 

of the unbiasedness of the estimator provided by RCT depends on our background knowledge 

as to potential hidden covariates, and is not guaranteed by construction alone as was suggested 

above.  Following this line of thought, Worrall (2007) suggest that the allocator should match 

the known confounders between the two groups in the first stage, and only then, on top, 

randomize the two groups into treatment and control. This highlights the fact that 

randomization is a second-best used only in light of insufficient knowledge. 14 

A famous example of the importance of prior background knowledge in assessing the precision 

and unbiasedness of the results extracted from RCT is a 2001 article that was published in the 

British Medical Journal. In this article, results from RCT consisting of 3,393 patients who 

hospitalized due to bloodstream infection several years before were presented. As described, 

the study population was randomly assigned into treatment and control groups, where the 

“treatment” received in this study was the prayer carried for the well-being of the participants 

in the treatment group by a stranger. As the research was conducted retrospectively – after 4-

 

13 The researcher may as well control for covariates in the statistical analysis stage. For an elaborate discussion 

of different methods used to adjust for covariates in the randomization process see: Dongsheng et al., 2000.   

14 This point will be discussed more extensively in the discussion of Bayesian structures in Chapter 3. 
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10 years in time – the participants in both groups were obviously not aware of their placing, or 

of the treatment investigated in the study. Surprisingly enough, the results of the study indicated 

that the length of stay (p=0.01) and the recovery time (p=0.04) was significantly shorter in the 

treatment group comparing to the control group (Leibovici, 2001). 

Although the experiment results were statistically significant and obtained by employing a 

“rigorous” study design, the scientific community, naturally, has not taken them seriously. The 

article has been published in the BMJ holiday issue and therefore has been dismissed as an 

innocent, amusing holiday-satire (which was indeed the case). However, given that the 

experiment was performed as described, it seems that despite its publication being satirical, a 

valuable lesson could still be learned from it.    

/ 

In assessing the response to Leibovici's study, the observed effect has been attributed to a 

random error rather than to the treatment itself, and this even though the random assignment 

and control methods were adequately applied, and were mostly not questioned. In the absence 

of any available mechanistic scientific explanation that could have accounted for the interaction 

between remote retroactive intercessory prayer and physical indicators, the empirical 

observations alone were perceived insufficient for establishing the causal claim in question. 

This example may serve as an extreme case indeed, but it highlights nevertheless that not only 

that the interpretation of the results obtained from RCT is in practice highly dependent on our 

prior beliefs, but it is also that - epistemically speaking - it should be so. Those prior beliefs 

are grounded by evidence - though from a type and source other than RCT- that gives us 

justified reason to doubt the legitimacy of rejecting the null hypothesis in cases of this kind.  

From the above, we can conclude that randomization is not a “bias-free” or “theory-free” 

mechanism. Evaluating its merit as a device providing an unbiased estimator depends on 

background knowledge as to potential confounding factors.  

Nevertheless, to avoid misinterpretation of the course of the argument so far, it is important to 

stress that while claiming that RCT does not meet the expectations attributed to it by many, 

this is not to underestimate the evident benefits and importance of the RCT as an inference tool 

used for reducing some potential biases. 

In particular, the primary benefit of RCT, and the of using randomized allocation process, is 

related to its resistance to selection bias within the sample:  the randomized allocation does 

make it harder for the researcher (though not impossible) to manipulate the assignment for the 

sake of achieving favorable results. This aspect indeed justifies the preference of RCT over 
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non-randomized trials, especially when there is an established concern that the entity 

conducting the research has a strong incentive to manipulate the results, such as in the case of 

industrial pharmaceutical clinical research. It should be noted, however, that as such, 

randomization is providing a response to a concern anchored in behavioral aspect that is 

context-sensitive, rather than to the epistemic challenges rising from possible non-causal 

correlations .15  

In addition, while RCT in some cases does not provide a biased estimate, other mechanisms 

probably will not provide better estimates in these terms. Considering the above, RCT is 

expected to be the least likely to yield biased results of the estimated sample treatment effect, 

even if this holds only under certain caveats. 

1.3.2 The generalizability of RCT’s findings 

The elements concerning internal validity as discussed above may be necessary for the 

evaluation of the various inference methods, however, those do not appear to be sufficient for 

our purposes. First, as indicated previously, we may be interested not only in unbiasedness, but 

also in warrant and precision. Furthermore, ultimately, the objective of a clinical trial is to 

support decision-making with regard to the entire target population, not only the sample 

population. Hence, properly interpreting the results for extrapolation purposes is a component 

of particular importance. This concern is also known as the “Efficacy-Effectiveness” problem. 

The term “Efficacy” refers to the ascription of some specific effect in the study population - 

usually a sample of the target population - resulting from receiving the treatment. The term 

“Effectiveness”, however, denotes the treatment effect in the target population.  

Unfortunately, even if RCT is regarded as a reliable tool for supporting efficacy claims, when 

it comes to the justification of claims about effectiveness, it turns out to be inadequate.  First, 

While the participants in RCTs are randomly partitioned into the treatment group and control 

groups, the study population is rarely selected randomly from the general target population. 

That is, RCT design grants random allocation of the sample but not random sampling. Indeed, 

natural experiments may allow for a random selection of the sample. In medical RCTs, 

however, participants are usually actively recruited and enrolled, and informed consent plays 

a key role. Thus, in most cases, it is unlikely to assume that the study population is similar to, 

or representative of, the target population. In this sense, RCT is also susceptible to selection 

bias. (Papineu, 1994 ; Cartwright & Deaton 2016 ; Worrall 2007).   

 
15 See more on sponsorship bias in section 4.3.  
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Another reason for assuming that the target population may differ from the sample population 

has to do with the study protocols and specifically with the exclusion criteria, which establishes 

selection bias.  Setting stricter exclusion criteria may reduce “noise” and thus allow for better 

precision. Involving participants that suffer from comorbidities, for example, makes it harder 

to control for other intervening variables, and thus makes the tracing of causal relationships 

less likely. Therefore, in many cases, we can expect that those patients would not be recruited 

to trials.16  

The existence of such recruitment and selection bias is supported by empirical literature, 

showing that participants in medical trials tend to be younger, healthier and are characterized 

by a stronger socio-economic background comparing to the general target population 

(Susukida et al., 2016). Ethnic and racial minorities tend to be consistently underrepresented 

in RCTs as well  (FDA Snapshot, 2017 ; 2018). 17  

A possible solution for those potential bises would be to conduct a variety of experiments, each 

time on a different population, and apply the conclusions to the population on which the trial 

was conducted only. However, the use of this tool may be very costly. Moreover, it allows 

control only for the observable characteristics, so the concerns mentioned above as to the 

selection of participants remain intact. In other words, once again prior background knowledge, 

of the kind that is not provided from within the experiment itself, is needed.  

Another concern is related to the short follow-up period of most RCT, which tends to be 

relatively short due to funding considerations, and therefore cannot determine the long-term 

effect of the treatment. Finally, we can expect a potential difference in the behavior of patients 

when they are closely observed and monitored during the experiment, compared to the messy 

 
16 For example, recent analysis RCTs of immunotherapy registration for metastatic melanoma patients shows 

that 59% of the target population did not meet the exclusion criteria (Donia et al., 2017).    

17 In 1977 the FDA banned women from participating in most clinical trials. However, in 1993 inclusion of women 

became obligatory. The current regulation require that the exclusion and inclusion criteria, as well as the 

distribution of population characteristics in the experiment would be presented transparently. Alongside this, there 

are various initiatives that seek to emphasize this problem in order to encourage better practice. See, for example, 

the FDA's project on the diversity of participants in drug trials: https://www.fda.gov/drugs/drug-approvals-and-

databases/drug-trials-snapshots. Nevertheless, unfortunately, while many legal and regulative tools were applied 

to increase representation of underrepresented populations in the past years, those are not always effective. For 

example, despite the binding regulation as to the representation of women in clinical trials, recent analysis shows 

that while women makes 51% of cardiovascular patients, they still amount only to 39% of participants in clinical 

trials in this field (Feldman et al., 2019).  

https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots
https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots
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real-world setting which involves behavioral and environmental considerations such as lack of 

responsiveness, drug interactions, etc.  18 

Before proceeding, it should be noted that the problem of generalizability highlights a broader 

and more substantial lesson regarding the relationship between RCT and other types of 

evidence. On the face of it, the discussion over the superiority of RCT over different types of 

evidence seems to be a matter of empirical dispute. All that is required in order for it to be 

settled, so one might think, is to simply reject the null hypnosis suggesting an equal degree of 

compatibility between the expected results as obtained from RCT and non-RCT studies and 

actually observed “real world” outcomes. This, prima facie, can be done by applying 

prospective analysis tools. However, at a closer look, it turns out not to be as simple as it seems, 

and this is due to several reasons. The first point to be mentioned is that in fact, while there are 

some famous examples of disparities between the results obtain from RCT and non-RCT data, 

19the findings from most meta-analysis comparing results from (well-conducted) observational 

studies and RCTs indicated no detectable systematic difference between the two 

(Vandenbroucke, 2011). Second, studies found that replications of RCTs investigating the 

same population and treatment produce many times inconsistent results (Zeilstra et al., 2017).  

Another essential issue related to the interpretation of discrepancies, once observed. If the 

observed “real-world” results are incompatible with those of the controlled experiment, it can 

always be suggested that there is an effect of intervening confounding variables. That is, one 

can propose that the expected result was not obtained in practice not because the results were 

misleading, but because the causal treatment effect - which was successfully inferred from the 

RCT - is concealed or disrupted by confounding variables that cannot be controlled for in real-

world setting. After all, this is the reason for utilizing the RCT study design in the first place. 

Still, this reasoning, unfortunately, establishes a circular argument that does not meet Popper's 

refutation test, as the results are judged by assuming the correctness of the experiment. 

 
18 One way of addressing this issue is by conducting “Pragmatic trials”. That is,  investigating the effectiveness 

of treatment under a broader “everyday” setting. However, these kinds of trials usually rely (at least in part) on 

non-RCT study design. See: Patsopoulos, 2011.   

19 The most famous case is the case of hormonal repalacement therapy. In the early 1990's, observational studies 

have suggested that hormonal replacement therapy is associated with the reduction of 30%-50% in the 

development of coronary artery disease in post-menstural women. However, the finding from a first large RCT 

investigating hormonal replacement therapy, presented in 1998, indicated showed no effect. The debate over the 

"real" effect of hormonal replacement therapy continues to this day.  
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From the above, it turns out that the problem of generalizability cannot be settled empirically, 

and therefore such reasoning cannot be used to resolve the disagreement as to the relationship 

between the types of evidence. 

The issue of generalizability poses a significant challenge to the use of the results obtains by 

RCT for policy-making. This raises primary concern as - using Cartwright’s words - the 

question we are interested in is not only “does it work (under specific circumstances)?”, but 

mainly “will it work for us?”.  While RCTs (under some assumptions) can provide a reliable 

answer to the former question, nothing in the construction of the experiment itself allows for 

the answering of the latter. Therefore, the judgment as to the extrapolation of RCT's findings 

to the target population necessarily depends (at least partially) on the knowledge extracted from 

other, non-controlled, evidence, for providing an indication as to the expected reproducibility 

in real-world settings. 

1.3.3 Ideal RCTs vs. Actual RCTs 

The last group of argumentations questioning the attributing a superiority to RCT vis-à-vis 

other types of evidence is more contingent in nature. This criticism does not address the 

essential characteristics of RCT, but the way it is actually performed in practice. In particular, 

it pertains to problems that arise from technical constraints, or from manipulations shaped by 

the interests of stakeholders involved in the conduction of the clinical trials. The result is that 

many of the actual RCTs are not the same as the ideal RCT outlined in the literature, and hence 

their preference over different types of evidence (which may be biased as well) is at least 

questionable. 

Today, the pharmaceutical industry is the primary funder of clinical trials. Over the years, many 

studies have shown that trials sponsored by pharmaceutical companies systematically yield 

favorable results comparing to trials that are financed by non-commercial bodies (Ahn et al., 

2017; Als-Nielson, 2003; Bero et al., 2007; Wareham, 2017). Those results hold both in terms 

of the likelihood of achieving results that are statistically significant (Lundth et al. 2017), in 

terms of presenting positive results (Bhandari et al., 2004), as well as  in the magnitude of the 

effects estimated (Lundth et al. 2017).  

Moreover, studies have shown that RCTs are also susceptible to “sponsorship bias” (Delgado 

& Delgado, 2017). Recent meta-analysis calculated Odd-ratios for favorable results in 509 

RCTs across all medical fields found higher OR for favorable outcomes in trials funded by for-

profit entities. By and large, trials conducted by the pharmaceutical industry tend to be of a 
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higher “quality” in terms of the hierarchy of evidence comparing to trials sponsored by non-

commercial entities (Delgado & Delgado, 2017). This, in part, is a result of the high cost 

involved in conducting an RCT.   

It should be noted that while some of the problems mentioned in the previous section, such as 

issues of internal validity, can be addressed by enlarging sample size, this may come at the 

price of increased risk of potential sponsorship bias. Many times, a trade-off exists between 

regulatory requirements regarding minimal sample size and power, leading to higher costs, on 

the one hand, and the independence of funding on the other. The stricter the requirement 

becomes, the harder it is to fund a trial without an industrial sponsorship (Doucet  & Sismondo, 

2008).20 

Moreover, RCTs in practice are many times open-labeled, due to unavoidable technical issues. 

Even in cases were the blindness method is applied, maintaining an effective ignorance can 

turn out to be very challenging in the actual administration of RCTs. In many instances, the 

occurrence of common, even minor, side effects can give researchers or participants reason to 

believe that one group has received active treatment, thus causing an effect that enhances their 

response (Berna et al., 2017). Studies have shown that correct guessing of the allocation, and 

in some cases merely beliefs and expectations, can have a substantial influence on the results 

and overstate the treatment effect (Bang, 2016).  

Before concluding, two important remarks on the feasibility of RCT should be noted. First, in 

some cases, the conduction of RCT may violate ethical standards or norms. Worrall (2007) 

uses the case of ECMO to illustrate the problematic ethical consideration involved in the 

conduction of RCT in some cases. In the late 1970s, a new technology for treating a condition 

of persistent pulmonary hypertension (PPHS), a congenital pulmonary disease whose mortality 

rate in infants was over 80% at the time. Early uses of this technology, called extracorporeal 

membraneous Oxygenation (ECMO), resulting in mortality rates of less than 20%. These 

results, obtained from an observational historical control analysis, while not serving as 

conclusive evidence, gave the researchers a strong reason to believe that ECMO is probably 

effective, with a high potential of preventing unnecessary mortality.  

 

20 In response to the finding presented above since 2008, a deliberate attempt was taken for minimizing 
sponsorship bias. This was done, among other things, through to the advancement of transparency to the 
public, and pre-specification of end-points. However, Meta-analysis that was conducted by Delgado & 
Delgado in recent years (2017) has yielded similar results as those of previous studies. This observation 
indicates that unfortunately, those steps are not as effective as one would expect. 
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However, in light of the conventional standards of the medical community, the researcher felt 

“compelled” to conduct RCT to confirm the results. The use of classical “pure” randomization 

would have required them to knowingly assign infants to the control group, anticipating that 

80% of them would die, while at the same time believing that a treatment that may prevent 

most of the deaths is available.  Therefore, eventually a “randomized plays the winner” method 

was applied. All in all, from a total of 12 patients, 11 patients were assigned to the ECMO and 

survived. One patient (the first patient) was assigned to the conventional treatment and died. 

(Worrall, 2007). 

This case indicates that RCTs are not produced in a vacuum. Prior knowledge is not only 

essential for the conduction of RCT but it also sometimes set deontological ethical restrictions 

on the conduction of scientific trials. In such cases, when there is a strong indication of the 

effectiveness of alternative treatment, the placement of patients into the control is exposing 

them to unnecessary risk thus coming in conflict with the moral duty of treating the interest of 

the patient as paramount. 

The problem presented here gave rise to what is known in the medical and bioethical literature 

as the ‘equipoise’ principle. According to this principle, conducting an RCT would be 

considered unethical, unless the two treatments are regarded as “equal bet in prospect” (Fried, 

1974), or at least in case of “honest disagreement” between professionals (Pimple, 2017). 

While the requirement for equipoise has was criticized by many (e.g., Miller & Brody, 2003; 

Veatch, 2007), a weaker version of this principle is still accepted by most as valid.   

The second issue to be discussed here is related to the technical feasibility of conducting  RCTs. 

In many instances, the conduction of RCT may not be feasible at all due to the small size of 

the target population. This problem is particularity evident in personalized genetic-based 

treatments. In such cases, enlarging the sample size by the expansion of the inclusion criteria 

may allow for RCT design, but at the same time may result in ethical problems, of the sort 

mentioned above (that is, including patients that are unlikely to response or patient that may be 

subjected to considerable risk if participated).21   

 

 
21 This worry is especially evident in the case of personalized molecular-based treatment, where the likely to 

benefit only small fraction of participants. Selecting only the patient with the relevant bio-markers is not always 

possible in such cases, and even when it is, it will result in small sample size mostly that would not meet  the 

minimal evidential standard for the conduction of an RCT (Nardini, 2014).  
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Conclusion:  

In conclusion, while the vital contribution of the EBM movement to the development of clinical 

research and the improvement of medical practice in the past century cannot be denied, some 

of the assumptions underlying it are controversial, in particular with regard to the use of the 

hierarchy of evidence and the unique status that is granted to RCT within it. 

Considering all the above, we can conclude that RCT does have unique epistemic power. 

However, its merits are many times overstated by EBM proponents. RCT's experiment design 

may contribute to reducing potential biases, but only in a context-dependent manner that is not 

granted by construction. Both the judgment regarding the internal validity of RCT as well as 

the evaluation of the appropriateness of its translation into practical uses requires additional 

knowledge. Such knowledge cannot be derived from the RCT itself and entail reliance on non-

experimental sources of evidence that are considered “inferior” in terms of the classical EBM’s 

hierarchy of evidence. For example, theoretical knowledge, experts-opinion and “real world” 

observational data. Furthermore, RCT is not always available due to technical and ethical 

issues. In these instances, effectiveness assessment can rely only on non-RCT data.  

These insights suggest that different types of evidence cannot be perceived in a discrete manner 

as they are represented in the evidence hierarchy. As a result, it is hard to justify and maintain 

the lexical use of evidence in decision-making processes as dictated by the logic of this 

hierarchy.  

Once the boundaries between different types of evidence are blurred, new issues and challenges 

that ought to be addressed rises. In particular, methods for the weighting and synthesizing of 

different types of evidence need to be established, on both theoretical and technical level.  In 

this sense, it seems that the above discussion calls for shifting the course of thinking from a 

traditional hierarchy of evidence into a web of evidence of various sorts, based on degrees of 

warrant and coherence.22 This challenge has practical implications in the context of policy, 

especially with regard to decision-making processes that are based on the principles of EBM. 

Thus, before turning to formulate the decision problem regarding evidence assessment more 

explicitly and clearly, we will review the existing policy regarding the incorporation of non-

RCT evidence into drug reimbursement decision-making processes.  

 
22 This line of thought is compatible with the idea of "epistemic" theory of causality rather than "difference 

making" or "mechanistic" accounts of cuaslity. See: Russo & Williamson, 2011.   
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CHAPTER II 

“There is an eternal dispute between those who imagine the world to suit their policy, and those who 

correct their policy to suit the realities of the world” ~ Sorel  

Introduction 

In most public healthcare systems, drug reimbursement decision-making processes are 

supported by the health technology assessment (HTA). In this chapter, we briefly review the 

fundamentals of the HTA process and discuss the existing literature on the utilization of non-

RCT evidence. Then, we explore the role of RCT evidence in drug reimbursement decisions in 

five different countries using qualitative and quantitative analysis tools. The main objective of 

this chapter is to investigate the extent to which the type of available evidence is predictive of 

the evaluation of a drug in the HTA process and, subsequently, the formulation of 

reimbursement recommendations of the drugs being appraisal. Another objective is to assess 

the compatibility between actual and stated policies regarding this topic. The findings of the 

descriptive analysis described in this chapter, combined with the theoretical discussion from 

the first chapter, will improve the understanding of the role of RCT evidence in drug 

reimbursement decision-making processes and set the foundations for exploration of possible 

ways to address evidential uncertainty during assessment of drugs’ effectiveness, which is the 

subject of the following chapter. 

1.2 Policy Review – Health Technology Assessment 

The healthcare market is characterized by various market failures, the most notable of which 

are imperfect information and information asymmetry between providers and consumers 

(Arrow, 1963). Endeavors to minimize the inefficiencies resulting from these market failures, 

along with distributional justice considerations, have led to the extensive involvement of the 

government in the healthcare market. In many developed countries, the government not only 

regulates the healthcare market but also is directly or indirectly involved in financing and 

providing healthcare services and health insurance. Such systems are usually referred to as 

public medical care systems, and they generally aim to provide all individuals and populations 

within their jurisdiction with adequate access to health resources and medical services. 

However, in recent years, the task of providing adequate, accessible healthcare has become 

more challenging. In the past decade, healthcare systems in developed countries have faced an 

increase in the cost of health inputs, resulting in part from the continual rise in drug prices 

(WHO, 2018). In addition, demographic changes associated with aging populations and 
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unhealthy behavioral trends due to contemporary lifestyles are leading to substantially 

increased demand for healthcare services (Dall et al., 2013). 

As the cost of healthcare inputs and the extent to which health needs remain unmet increase, 

so do the resource limitations facing public healthcare systems. In this context, the need to 

prioritize resource allocation and optimize the delivery of care is of utmost importance. Faced 

with these challenges, various healthcare systems are seeking to formulate sophisticated 

models for prioritization and decision-making processes to enable more efficient and equitable 

distribution of scarce health resources (Nagel & Lauerer, 2015). 

Following the discussion in the previous chapter, the measures taken to rationalize 

prioritization processes in advanced public health systems involve systematic collection and 

analysis of scientific evidence, as dictated by the principles of EBM. In most developed public 

healthcare systems, the setting of priorities regarding public coverage of medical products and 

services is supported by the "Health Technology Appraisal" (HTA) mechanism, an 

interdisciplinary method of policy analysis defined as “the bridge between evidence and 

policymaking” (Battista & Hodge, 1999). Consistent with this definition, the ultimate aim of 

the HTA process is to inform policymakers involved in decision-making processes concerning 

public funding by assessing the added value of a candidate technology compared to existing 

technologies. It should be noted that the term “value” is used in health-related HTA in a broad 

sense, incorporating a variety of clinical, economic, social, and ethical considerations (Detiček 

et al., 2018). 

While the HTA is comprehensive and covers a wide range of attributes, the discussion in this 

thesis will be limited to the segment of the HTA process that concerns evaluation of the 

evidence supporting the clinical effectiveness of drugs for reimbursement recommendation 

purposes. The assessment of relative clinical effectiveness is a fundamental and central 

component of the HTA process, serving as a significant predictor of the nature of 

recommendation to be provided by the agency performing the HTA. A drug that failed to 

convincingly demonstrate an adequate level of effectiveness is not likely to be recommended 

for public funding (Sorenson & Chalkidou, 2012). The formal clinical effectiveness assessment 

procedure features less variability across countries than other components of the HTA process, 

and therefore it is a more appropriate subject for the comparative analysis in this thesis. In 

addition, while the term “health technology” covers diverse technologies ranging from 

prevention programs to diagnostic tests, devices, and procedures, we will focus only on 

therapeutic drugs. 
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Fundamentals of the HTA Process 

In public health systems, the HTA process is performed by one or more national governmental 

agencies. The reimbursement decision-making process consists of three main phases: (1) 

assessment, (2) appraisal, and (3) final decision-making. The first two elements are usually 

conducted by the HTA agency (or agencies), whereas the third is usually performed by another 

body based on the recommendations provided by the HTA agency as well as a broader set of 

social and normative considerations (HUPATI, 2015). 

Figure 2.1: HTA process, three-phase model (EUPATI, 2015) 

 

The HTA process starts with identification of the topic to be assessed. Some countries, such as 

France and Poland, carry out the HTA process for all new drugs that have EMA authorization, 

while others, such as England and Canada, only assess drugs that meet pre-defined criteria. For 

example, for a technology to be evaluated by the English HTA agency, NICE, it should meets 

some criteria as a precondition. For instance, it should already demonstrate a significant benefit 

and be supported by appropriate evidence (NICE, 2014).23 

The assessment phase involves collection and retrieval of relevant evidence. In most cases, the 

evidence supporting the evaluation is submitted in the reimbursement application dossier by 

the market authorization holder. In some (uncommon) instances, the HTA agency may initiate 

an independent primary data collection process (EUPATI, 2015).  

The body of evidence collected for the HTA process is appraised by an independent expert 

committee. In most agencies, the evaluation process is comparative, taking the form of a 

relative effectiveness assessment (REA). The aim of this type of assessment is to evaluate the 

 
23 In light of criticism regarding the lack of transparency in the pre-selection process, NICE has attempted to 

make the prioritization process and methods more explicit.  
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additional clinical benefits of the pharmaceutical under investigation in comparison to the 

prevailing standard of care. In addition, most agencies perform an economic evaluation based 

on budget impact or an incremental cost-effectiveness analysis of various forms (ICER).24 In 

the final phase, the findings are summarized and a reimbursement recommendation is 

formulated for submission to the authorized decision-making body. 

The essential framework of the HTA process is outlined above. Nevertheless, it must be 

emphasized that the process is not uniform across countries; in practice, the scope of the 

process and method for assessment differ in different contexts. Some agencies perform the full 

HTA process, which covers the technical features, safety, clinical efficiency and effectiveness, 

budget impact or ICER, and social, legal, and ethical impact of technologies. Others default to 

rapid, partial assessment focusing on clinical effectiveness and safety and evaluate other value 

components only in exceptional cases when the need arises (Anglelis et al., 2018; Oortwijn, 

2018). The weight given to economic and social variables, as well as the methods used for 

estimating them, also vary between different health systems (Kristensen, 2017). This variation 

is a result of the legal, institutional, and regulatory environments within which the process is 

being performed, reimbursement arrangements, dominant values and norms, and policy legacy 

(Anglelis et al., 2018; Akehurst et al., 2017; Allen et al., 2017). For a detailed comparison of 

different HTA processes in the five countries under examination in this thesis, see Appendix A. 

25 

The considerable heterogeneity that characterizes HTA processes in different countries makes 

international comparison of HTA processes and resolutions especially challenging (Fischer, 

2012). However, it is agreed that some key challenges and opportunities are shared by all HTA 

agencies, regardless of the specific regulatory context within which they operate. One such 

challenge is establishing mechanisms for incorporating and integrating different types of 

clinical evidence. Overcoming this challenge is essential to provide more rational and justified 

recommendations regarding drug reimbursement to inform decision-making.  

 
24 However, as mentioned above, evaluation of economic factors is beyond the scope of this work. 

25 Due to the high heterogeneity in HTA processes across countries, recognition of the value of collaboration 

between different medical regulatory agencies has grown over the past decade. In addition, Article 15 of the EU’s 

directive for cross-border healthcare, which states that “the Union shall support and facilitate cooperation between 

national authorities or bodies responsible for HTA”25 (2013/329/EU), gave rise to various institutionalized 

initiatives for standardizing the HTA process. The most prominent of these is the EUnetHTA project, which aimed 

to improve the transference of knowledge and information between HTA agencies across Europe (Allen, 2017). 

However, while efforts have been made to standardize processes, the ultimate goal is still far out of reach and 

HTA processes are still characterized by a high level of fragmentation and variation (Allen, 2017). 
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The need for an evidence integration mechanism has become especially relevant recently, as 

treatments have become more personalized and the technological development of effective 

treatments is occurring more rapidly. In this context, carrying out extensive RCTs to inform 

decision making in a timely manner is a significant challenge. , advancement in information 

technologies makes previously unattainable “real-world” observational data available to 

utilize. These trends raise the need for rethinking the existing evidence assessment 

mechanisms. 

1.3 Literature Review 

Recognizing the opportunities and challenges involved in expanding the scope of evidence 

used to support clinical efficacy assessments, recent studies have expressed interest in 

analyzing HTA recommendations in general and the role of different types of evidence in this 

process in particular. This literature review includes both qualitative analyses of experts’ 

attitudes toward non-RCT evidence and quantitative estimations of the extent to which these 

evidence are utilized.  

First, various qualitative studies have identified increasing recognition of the value of non-

RCT data for informing drug coverage decisions among policymakers in Europe. However, 

while there is more receptiveness to the idea of incorporating such evidence into evaluation 

processes, decision-makers have expressed concerns regarding possible biases and stressed the 

need for new methodological frameworks and skills to overcome this problem (Angelis et al., 

2017; Gill et al., 2016; Kamphuis et al., 2018). The increased interest in the use of non-RCT 

data has also resulted in a growing number of studies that formulate methodological guidelines 

and initiatives for investigating the best practices regarding the use of non-RCT data 

(sometimes referred to as real-world evidence) by various regulatory and NGO bodies. such as 

the US Food and Drug Administration (FDA, 2018, 2019), European Medical Agency (EMA, 

2018), ISPOR special task force (2017), and HTAi Global Policy Forum (2019). 

While the acknowledgment of non-RCT data as valuable is gradually increasing, and so is the 

recognition of the limitations associated with the traditional role of RCT, recent quantitative 

studies have indicated that the use of non-RCT data for informing actual policy 

recommendations remains limited nevertheless. 

Griffiths et al. (2017) assessed the role of noncomparative evidence (i.e., that used in studies 

that do not present the results of another treatment) in HTA decision making. The findings, 

based on an analysis of 549 reports published from 2010–2015, suggested that reliance on 
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noncomparative evidence alone is limited; only 4–6% of recommendations were based solely 

upon this data. Noncomparative data were considered in analyses more often, but with higher 

variance; 12%, 13% and 38% of IQWiG (Germany), CDATH (Canada) and NICE (England) 

appraisals, respectively, referenced non-comparative data in some part of the HTA process 

(i.e., either clinical or economic assessment). Finally, in total, 13% of CADTH 

recommendations (n = 2), 40% of NICE recommendations (n = 2), and no IQWIG 

recommendations based on noncomparative evidence alone were positive.  

Similar results were presented by Vreman et al. (2018) and Makady et al. (2018). The former 

study investigated reimbursement recommendations for conditionally approved drugs with 

non-comparative evidence, finding that only 12 of the 62 investigated drugs (13%) were given 

positive recommendations when no RCT data was available (Vreman et al., 2018). The latter 

study investigated melanoma treatment appraisals in five European countries that incorporated 

non-RCT data in effectiveness evaluations, finding such data in 22% of NICE (England) 

evaluations, 9% of HAS (France) evaluations, and no IQWiG (Germany) or ZIN (the 

Netherland) evaluations. Although there is a growing interest in the incorporation of non-RCT 

data among stakeholders, the authors did not find a substantial change in the use of this data 

for melanoma drug appraisals over the years (Makady et al., 2018).  

While the extent of use of non-RCT data for reimbursement decisions has been investigated in 

the literature, previous studies based their analyses on investigations of final HTA reports. This 

methodology is problematic for two main reasons. First, the HTA drug evaluation process is 

confined to drugs that have received market approval. A drug that is not approved by either the 

EMA or FDA cannot be a candidate for public coverage. Therefore, to assess the attitude 

towards RCT evidence within the context of public reimbursement decisions, one should first 

consider the proportion of drugs with non-RCT evidence that received market approval. If the 

rate of approved drugs for which there is no available RCT data is particularly low, it is 

expected that the rate of public reimbursement of such drugs would be low as well, even in an 

extreme scenario in which all drugs without RCT evidence would be given a positive 

recommendation. Second, the existing research did not consider the selection processes that 

precede the HTA. Some agencies, such as NICE, conduct a pre-screening process to select the 

technologies to be evaluated based on general prioritization criteria (e.g., availability of 

evidence, population size, disease severity). Consequently, it is possible that market-approved 

drugs with no supporting RCT at the time of market approval will not be evaluated in the first 

place, or will be assessed under exceptional circumstances , of the type that is correlated with 
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favorable (or unfavorable) recommendations. In such a case, studying only the final HTA 

reports would produce biased results.  

In the following section, we investigate the role of RCT evidence in drug reimbursement 

decision-making processes. To address the above concerns, we considered the effect of 

evidence type on the probability that a drug will undergo the HTA process and the impact of 

the type of recommendation provided after assessment. Our research questions are as follows: 

(1)  Does evidence type predictive of the evaluation status of approved drugs undergoing 

the HTA process?  

(2) Does evidence type predictive of the final reimbursement recommendation for a drug 

after the HTA? 

(3)  Do the stated attitudes of various HTA agencies regarding which evidence types can 

be used to support effectiveness claims align with their actual policies? 

Building upon the theoretical discussion of the benefits and limitations of the RCT method in 

the previous chapter and upon the findings from the existing literature, which are reviewed 

above, we hypothesize that drugs with RCT evidence are more likely to be evaluated with the 

HTA processes and granted more favorable recommendations after the HTA assessment 

compared to drugs whose effectiveness is not supported by RCT evidence. We also hypothesize 

that regulatory bodies will manifest concern about the use of non-RCT evidence in clinical 

effectiveness assessment processes and that this concern is manifested in the actual policies of 

the investigated bodies.  

1.4 General Method 

A mixed-methods approach was used to answer the research questions. In the preliminary 

stage, qualitative document analysis was performed to examine HTA agencies’ stated positions 

regarding the role of various types of evidence in clinical effectiveness assessment process. In 

the second stage, using quantitative analysis tools,  we retrospectively analyzed the 

reimbursement  recommendations of HTA agencies for all drugs that received market approval 

by either the FDA or EMA from 2015–2018. The use of mixed methods is essential for tracing 

possible disparities between the stated positions of the agencies and their policies in practice. 

In the following sections, we will review the qualitative part of the analysis and then provide a 

detailed review of the quantitative part.  

Both the qualitative and quantitative analyses were based on investigation of five HTA 

agencies, including four from Europe—IQWiG (Germany), NICE (England), SMC (Scotland), 
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and HAS (France)—and one non-European agency—CADTH (Canada). These bodies were 

selected based on the following criteria: (1) the agency is a governmental entity operating 

within a public medical care system; (2) the jurisdiction of the institution is authorized by law 

and the recommendations it provides have a direct influence on the public coverage status of 

the drug under investigation; and (3) both the recommendations and reports formulated by the 

agency are publicly available in English and provide an overview of the studies evaluated 

during the assessment process. 

 

Table 2.1. Agencies selected for investigation  

Abbreviation Full Name Country 

HAS Haute Autorité de Santé France 

NICE National Institute for Health and Care Excellence England 

IQWiG Institute for Quality and Efficiency in Health Care Germany 

CADTH Canadian Agency for Drugs and Technologies in Health Canada 

SMC Scottish Medicines Consortium Scotland 

 

2.3.1 Qualitative Document Analysis 

2.3.1.1 Data Collection 

The documents used for this part of the study are the latest official methodological guidelines 

published byvarious the five HTA agencies. In this context, we referred to only reimbursement 

decisions and did not include guidelines regarding managed access or conditional programs. 

Relevant information was extracted from the relevant sections dedicated to effectiveness 

assessment.  

2.3.1.2 Results 

Table 2.2. summarizes the types of effectiveness evidence that are considered admissible by 

each agency. The document analysis indicated that almost all HTA agencies apply some form 

of hierarchy of evidence, either explicitly or implicitly. Moreover, all agencies emphasize the 

unique epistemic strength of RCT evidence. However, the willingness to accept non-RCT 

evidence varies between different agencies. In particular, NICE and CADTH express the most 

pluralistic position with regard to the types of evidence that are acceptable, while IQWIG has 

the most conservative position.26 The full document analysis can be found in Appendix B.  

 
26 We must note that, unlike the other agencies, SMC seems to feature a hierarchy based on the sub-characteristics 

of the RCT study design (i.e., one that uses an active comparator). Interestingly, in the Scottish Guide, there is no 
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Table 2.2. Admissible Evidence for Effectiveness Assessment by Agency 

Issue 
NICE 

(England) 

IQWiG 

(Germany) 

CDAT

H 

(Canad

a) 

SMC 

(Scotland) 

HAS  

(France) 

RCT Yes** Yes** Yes 
Active-controlled 

randomized trials** 

High-powered RCT 

** 

    

 

Placebo-controlled 

randomized trials 

Low-powered RCT 

Observationa

l Studies 

Yes 

 

In 

exceptional 

circumstance

s only 

Yes 

In exceptional 

circumstances 

only 

Comparative 

observational studies 

Animal 

Studies 
N/A N/A N/A N/A No 

Expert’s 

Opinion 
Yes N/A Yes 

In exceptional 

circumstances 

only 

In exceptional 

circumstances only 

** Explicit priority granted. 

Sources: NICE, 2013 ; IQWiG 2017 ; SMC 2019 ; CADTH 2017, HAS 2007 

An in-depth consideration of the arguments provided in the agencies' methodological 

documents indicates two different perspectives on the role of non-RCT evidence in the 

effectiveness assessment process. The first type reflects hierarchical reasoning; from this 

standpoint, for non-RCT data to be considered in an effectiveness assessment, special 

justification should be provided. As indicated in the previous chapter, such justification is 

usually given when conducting RCT would be impracticable or unethical. That is, in line with 

the classical EBM approach, when the golden standard (i.e., RCT evidence) is unavailable, 

there is no choice but to rely on observational studies as the second-best option. Such reasoning 

is reflected most significantly in the methodological guidelines published by the German HTA 

agency, IQWiG.  

The second perspective on using non-RCT evidence, which is particularly apparent in the 

publications of NICE and CADTH, stems from recognition of the limitations of RCT data in  

the establishing effectiveness claims. These limitations mainly pertain to external validity 

issues such as those reviewed in the previous chapter. The role of non-RCT data in this context 

is based on non-hierarchical reasoning, as each type of evidence provides different kinds of 

information and has its own merits and shortcoming. That is, from this point of view, different 

 
explicit distinction between the use of placebo-based RCT, which is considered inferior to active RCT, and 

observational evidence. Other guides do not make a distinction based on RCT characteristics in only comparative 

experiments. 
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types of evidence are not substitutional, but complementary. While there remains uncertainty 

relating to the vulnerability of non-RCT data to various biases, this approach evaluates 

evidence in terms of multiple dimensions, (a lack of) bias being only one of them. Under such 

a view, non-RCT data may be informative despite its lower level of evidential certainty.27 

The following section examines how these attitudes regarding the utilization of various 

evidence types are translated into actual policy decisions regarding public reimbursement of 

drugs. 

2.3.2 Quantitative Analysis 

2.3.2.1 Data Collection 

To address the methodological issues identified in previous studies, data collection was 

performed in two phases. In the first phase, we formed a list of all drugs that received market 

approval by either the EMA or FDA from 2015–2018, specifying the study design of the pivotal 

efficacy study (or studies) used in their approval assessment. In the second phase, we matched 

each approved drug to their reimbursement recommendation status in each of the five HTA 

agencies.  

The data collection process was based on a systematic review of publicly available data 

extracted from the official websites of the two market authorization agencies and the five 

selected HTA agencies. The following sections describe the process that was used to form the 

list of approved drugs and their corresponding recommendations. 

- Market Authorization Dataset 

To avoid selection bias, the market authorization agencies’ online databases were searched to 

identify all new active substances granted market authorization between January 1, 2015, and 

December 30, 2018. We did not include data on drugs approved in 2019, as data for this year 

is partial and there is a possible time gap between market authorization and HTA submissions, 

usually due to the capacity of the institution performing the HTA.28  

The inclusion criteria for analysis were submission of human medication for market 

authorization for therapeutic proposes, reference to new molecular entities (NMEs), 

recombination of existing formulations, and new biological substances evaluated by either the 

 
27 However, it should be noted that it is still unclear whether non-RCT data alone can support effectiveness claims. 

28 Early assessment is conducted about 25–36 weeks after market authorization is granted, depending on the 

regulatory context. 
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FDA or EMA.29 The exclusion criteria were the following: veterinary products, technologies 

used for diagnostic purposes, generics and biosimilar drugs, and drugs that were reexamined 

for dose-response assessment purposes. Moreover, we excluded medicines that were refused 

market authorization and those that were excluded or withdrawn after being approved.30 

The data on EMA approval were extracted from a list of European public assessment reports 

(EPARs) generated on July 13, 2019.31 Information about pivotal evidence in efficacy 

assessment was collected from data provided by the reviewer, as presented in the efficacy 

assessment section of the European Public Assessment report on the drug. The list of drugs 

approved by the FDA was extracted from the CDER’s (Center for Drug Evaluation and 

Research) Novel Drug Approvals reports, which were compatible with our inclusion criteria. 

Data about the properties of the drugs as well as the types of primary evidence used in 

appraisals were collected from the drugs@FDA database (https://www.accessdata.fda.gov) 

based on inspection of the statistical review reports. Missing data regarding trial characteristics 

were supplemented by data provided by the US National Library of Medicine and EU Clinical 

Trial Register database. 

The data included the specification of clinical indication(s), the type of pivotal efficacy study32 

(RCT or non-RCT), date of approval, and selected properties of the drug (e.g., approval through 

accelerated assessment pathway, orphan status, and oncological designation).  

- HTA Agency Dataset  

Data on HTA recommendations were collected from reports published on the agencies’ official 

websites by searching for the approved drugs by name using the websites’ search engines. We 

focused on initial assessment of new pharmaceutical entities rather than full assessment. While 

full assessment is conducted with a time lag after the drug has already been on the market for 

some time (approximately a year), the initial assessment is conducted about 25–36 weeks after 

market authorization is granted (Ivandic, 2014).33 We chose to focus on early evaluations 

because the levels of uncertainty at this stage are more substantial and the data available for 

 
29 Historically, each country in Europe was independently responsible for pharmaceutical licensing. However, in 

1995, the EMA was founded to serve as a centralized licensing and authorization agency. The decisions of the 

EMA are binding and apply to all member states.  

30 Data regarding medicines that were denied market authorization are available for the EMA, but not the FDA. 

As we used the list of authorized drugs as a benchmark for investigating reimbursement decisions in the context 

of HTA processes, which are conducted only on authorized drugs, this does not result in a selection problem. 

31 As mentioned above, drugs approved in 2019 were not included in the analysis.  

32 In cases with more than one pivotal study (≥ 2), we included the study with the most rigorous design. 

33 The time frame changes from country to country. 

https://www.accessdata.fda.gov/
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the assessment are more likely to be similar to the data available during the market 

authorization review. 

The HTA data included the following variables: evaluation status (a binary variable referring 

to whether the drug has been investigated with the HTA process), recommendation status when 

applicable (positive, negative, restricted), year of assessment, and type of primary evidence 

used for the effectiveness evaluation (RCT or non-RCT).34 Figure 2.2 presents a flow chart of 

the data collection process. 

For further discussion on classification considerations and detailed information about the data 

sources see Appendix C. 

 Figure 2.2. Data collection flowchart 

Data Summary 

A total of 1,407 reports were identified. Of these, 1,188 reports that met the inclusion criteria 

were included in the analysis: 435 Market authorization reports and 753 HTA reports. The 

market authorization reports include 208 EMA appraisals and 217 FDA appraisals. Eighty of 

the reports referred to the same active substance and received market approval for the same 

 
34 In some cases, the main study used for evaluation is not explicitly presented as such, but nevertheless it could 

usually be inferred from the discussion. 
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indications by both EMA and FDA.35 In these cases, we used the evidence from the more recent 

report. Overall, following deduplication, the market authorization dataset contained 

information on 345 pharmaceutical products that were approved from 2015–2018.  

Figure 2.3. Flow chart of data structure 

The HTA report database includes 114 appraisals by CADTH, 166 appraisals by NICE, 169 

appraisals by SMC, 177 appraisals by HAS, and 97 appraisals by IQWiG. It should be 

highlighted that, according to German law (social code book V, § 35a, par. 1 sentence 11), the 

added benefit of authorized orphan drugs is regarded as proven by the fact that they have 

 
35 We cannot rule out the possibility that some of the medications approved by the EMA were refused by the FDA, 

as data on refused drugs is unavailable for the FDA. Nevertheless, as we are interested in drugs approved by any 

of the agencies, this does not distort the data. Moreover, the decisions of the two agencies have a high rate of 

concordance (91–98%), and rare divergences are usually the result of different interpretation of the same efficacy 

data by each agency (see Kashoki, 2019). 
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received market authorization. Therefore, the analysis for IQWiG includes only non-orphan 

drugs. 

Descriptive Statistics 

In the entire investigated period, 58 approved drugs (16.8%) received market authorization 

based upon a pivotal study (or studies) with a non-randomized design (the majority, 77%, were 

prospective single-group assignment clinical studies). The list of drugs without pivotal RCT 

evidence at the market approval phase can be found in Appendix D. 

Figures 2.4 and 2.5 presents the distribution of the two main variables: evidence type, 

evaluation status, and recommendation status by type of pivotal evidence. The distribution 

roughly aligns with the findings of previous studies and is compatible with NICE’s official 

statistics regarding the overall rate of favorable recommendations (Griffiths et al., 2017).  

Figure 2.4 Evaluation Status by Evidence Type  
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Figure 2.5. Evaluation Status by Evidence Type  

2.3.2.2 Econometric Model  

To test the relationship between the type of evidence available for a drug and its reimbursement 

recommendation, we used a mixed-effects logistic model. This type of model is well-suited for 

our analyses because it allows for incorporation of both fixed and random effects. As the 

observations for the same drug are correlated, when constructing the model, we clustered drug 

as an identifier variable and applied a random effect to allow for drug-specific random 

intercepts. The analysis presented below was conducted in two parts, each focused on a 

different point in time. 

As mentioned above, for a drug to be a candidate for public coverage, it must be evaluated via 

the HTA and be given a favorable recommendation. In some countries, the HTA agency 
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engages in a preliminary process to select drugs for the HTA. Therefore, we begin by 

investigating the effect of having RCT evidence during market authorization on the probability 

of being assessed through the HTA pathway (i.e., evaluation status). Then, we turn to study the 

effect of RCT evidence during the HTA process on the type of recommendation provided for 

the drugs going through HTA appraisals in two sub-analysis: One with a binary dependent 

variable concerning the probability of obtaining a favorable recommendation, and the other 

concerning the probability of obtaining a specific type of recommendation. 

 In each part of the analysis, we used three similar models. The basic model included the type 

of evidence available (RCT or non-RCT) and the HTA agency as predictor variables. The 

second model included drug-specific properties (orphan status, oncological designation, and 

market approval in an accelerated pathway) as control variables. In the final model, we 

included the interaction terms between each HTA agency and the type of evidence. 

The analysis was performed using Stata version 13.1. For the full formal specifications of the 

models, see Appendix E. 

2.3.2.3 Results 

Evaluation within HTA 

Table 2.4. summarizes the estimated impact of RCT evidence at the time of market approval 

on the probability of being assessed through the HTA pathway. 

As can be seen from the table, overall, evidence type at market authorization had no significant 

influence on the probability of being assessed. Similar results were obtained from the second 

model, which controlled for drugs’ features.  

When considering the pre-selection procedures, however, it is essential to be aware of variation 

in the regulatory contexts of different agencies. For example, the German HTA agency, 

IQWiG, does not initiate selection of the topics for assessment but performs HTA assessment 

at the request of the Federal Joint Committee (G-BA), which serves as the highest decision-

making body in Germany. In contrast, according to the French regulation, HTA evaluation is 

obligatory for all EMA-approved medicines, and thus the initial filtering process does not apply 

in this regulatory context for most drugs. Of the remaining three agencies, CADTH (Canada) 

and NICE (England) have a formal process with predefined criteria for topic selection. Finally, 

although it is not obligated to do so by law, SMC (Scotland) strives to evaluate all approved 

drugs. However, it does not actually assess all approved drugs, nor does it present prioritization 

criteria or establish an orderly pre-evaluation process. 
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Recognizing that differences in the regulatory context may mask the effect of evidence type on 

the probability of being assessed in different countries, using the third model, we studied the 

marginal effect of RCT in different contexts by analyzing interactions between the HTA 

agency and evidence type. This allowed each HTA agency to have a different RCT effect. The 

results of this model suggest that the effect of the availability of pivotal RCT evidence at market 

approval on the probability of being evaluated is almost seven times greater for CADTH and 

six times greater for SMC compared to HAS, in which regulatory obligations allow for only 

Table 2.4.  The effect of RCT at market approval on evaluation status  

Dependent Variable: Evaluated=1  
Model: Mixed-effects logistic regression  

 
 

(1)  
Odd-Ratio  

(2)  
Odd-Ratio 

(3)  
Odd-Ratio 

RCT at market 
authorization 
𝑟𝑒𝑓. = 𝑁𝑜 

Yes 
1.45 (0.49) 

[0.49 − 2.68] 
1.45 (0.49) 

[0.49 − 2.68] 
0.78 (0.43) 

[0.26 − 2.33] 

HTA agency 
𝑅𝑒𝑓. =
𝐻𝐴𝑆 (𝐹𝑟𝑎𝑛𝑐𝑒) 

NICE (England) 
0.69∗∗ (0.14) 
[0.46 − 1.05]     

0.70∗∗ (0.15) 
[0.46 − 1.05]     

0.60 (0.30) 
[0.22 − 1.62]     

IQWiG (Germany) 
0.34∗∗ (0.08) 
[0.21 − 0.54] 

0.34∗∗ (0.08) 
[0.21 − 0.54] 

0.21† (0.14) 
[0.06 − 0.77]     

CADTH (Canada) 
0.17∗∗ (0.04) 
[0.11 − 0.28]  

0.17∗∗ (0.04) 
[0.11 − 0.28] 

0.03∗ (0.02) 
[0.10 − 0.12]     

 
SMC (Scotland) 

1.08 (0.23) 
[0.71 − 1.66] 

1.09 (0.24) 
[0.71 − 1.67] 

0.26† (0.14) 
[0.10 − 0.74]     

Drugs’ 
Attributes 
𝑟𝑒𝑓. = 𝑁𝑜 

Oncological Drug − 
8.88∗∗ (3.45) 
[4.15 − 19.0] 

9.3∗∗ (3.69) 
[4.28 − 20.22]     

 
Orphan Status − 

0.76 (0.29) 
[0.43 − 0.37] 

0.74 (0.27) 
[0.44 − 6.61]     

 
Accelerated Approval  − 

0.29∗∗ (0.11) 
[0.14 − 0.61] 

0.28∗∗ (0.11) 
[0.13 − 0.60]     

Interaction 
terms 

NICE (England) ×  𝑅𝐶𝑇 − − 
1.19 (0.67) 

[0.39 − 3.60] 
Ref.
=  HAS (France)
×  𝑅𝐶𝑇𝑡1

 

IQWiG (Germany)
×  𝑅𝐶𝑇 

− − 
1.71 (1.18) 

[0.44 − 6.61] 

 CADTH (Canada)
×  𝑅𝐶𝑇 

− − 
 6.78∗∗ (4.56) 
[1.81 − 25.3] 

 
SMC (Scottland) ×  𝑅𝐶𝑇 − − 

5.65∗∗ (3.27) 
[1.82 − 17.56] 

 Obs (#) 1628 1628 1628 
 Groups (#) 345 345 345 
 Wlad 𝐶ℎ𝑖2 79.8∗∗ 107.18∗∗ 114.64∗∗ 
Note: Each column reports the estimated effects of a regressions in which the dependent variable is the 
evaluation status.  
Values: Odd-Ratio (Standard deviation) [95% confidence intervals] 
**  Significant at the 1% level , *  Significant at the 5% level, †  Significant at the 10% level 
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minimal filtering. However, no difference was detected for NICE, which also applies a pre-

selection process.  

Reimbursement Recommendations 

As mentioned above, in the second part of the analysis, we investigated the reimbursement 

recommendations provided by HTA agencies for drugs for which an HTA report is available. 

There are three categories of recommendations classified into: (1) positive recommendations, 

in which the drug is recommended with market authorization as an option for treatment; (2) 

restricted recommendations, in which the drug is recommended for a narrower population or 

indication than that outlined in the market authorization36; and (3) negative recommendations, 

in which the drug is not recommended.  

Table 2.5. presents the estimated impact of evidence type during HTA evaluation on the type 

of recommendation provided by the agency. As this analysis refers to a later point in time than 

the previous analysis, it should be noted that for some of the drugs that were granted market 

approval based on non-RCT evidence, RCT evidence (or ongoing partial RCT evidence) was 

available by the time of the HTA appraisal (NICE: n = 9, CADTH: n = 4, HAS: n = 2, IQWiG: 

n = 3, SMC: n = 6). Therefore, in this analysis, the RCT predictor used to estimate the models 

in the table below refers to the availability of RCT data at the later point in time (i.e., at the 

time of the HTA appraisal). As evaluations of the same drug may be conducted at different 

points in time, this variable does not include identical values across all five agencies. 

Panel (A) in the table focuses on the probability of obtaining a favorable recommendation. In 

this analysis, the independent variable is binary: a favorable recommendation (i.e., a non-

negative recommendation, whether positive or restricted) and an unfavorable recommendation 

(i.e., a negative recommendation). The findings suggest that the overall likelihood of a drug 

receiving a favorable HTA recommendation is three times higher when RCT evidence 

regarding effectiveness is available at the time of assessment. Similar results were obtained 

when controlling for the drugs’ characteristics. The results regarding the interactions between 

evidence type and agency indicate variation in the effect of evidence type between different 

HTA agencies. In particular, the effect of RCT evidence on receiving favorable outcome is 

4.29 times stronger for NICE and 6.77 times stronger for CDATH compared to HAS. It should 

also be noted that all drugs with non-RCT evidence evaluated by IQWiG were given negative 

recommendations. Therefore, the German agency was omitted from this model.   

 
36 In NICE, restricted recommendations are referred to as “optimized.”  
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Table 2.5. The effect of RCT at HTA evaluation on reimbursement recommendation status 

 
 

(A) 
Dependent Variable: Favorable Recommendation 

Mixed-effects logistic regression 

 (B) 
Dependent Variable: Recommendation 

Mixed-effects ologit regression 
Variable 

 
(4)  

Odd-ratios 
(5) 

Odd-ratios 
 (6) 

Odd-ratios 
 (7)  

Odd-ratios 
(8) 

Odd-ratios 
 (9) 

Odd-ratios 
RCT at HTA 
evaluation 
𝑟𝑒𝑓. = 𝑁𝑜 

Yes 
3.07∗∗ (0.89) 
[1.77 − 5.31] 

3.43∗∗ (0.99) 
[1.9 − 6.07] 

1.77 (0.43) 
[0.26 − 2.33] 

 
2.32∗∗ (0.62) 
[1.36 − 3.92] 

2.77∗∗ (0.99) 
[1.9 − 6.07] 

1.69 (0.75) 
[0.71 − 4.03] 

HTA agency 
𝑅𝑒𝑓. =
𝐻𝐴𝑆 (𝐹𝑟𝑎𝑛𝑐𝑒) 

NICE (England) 
1.33 (0.38) 

[0.76 − 2.32]     

1.29 (0.37) 
[0.74 − 2.26]     

0.42 (0.28) 
[0.11 − 1.51]     

 0.87 (0.20) 
[.55 − 1.32]     

0.83 (0.19) 
[0.52 − 1.31]     

0.25∗∗ (0.15) 
[0.07 − 0.84]     

IQWiG (Germany) 
0.20∗∗ (0.06) 
[0.11 − 0.36] 

0.21∗∗ (0.06) 
[0.16 − 0.38] 

−  
 0.12∗∗(0.03) 

[0.07 − 0.21] 
0.13∗∗ (0.03) 
[0.07 − 0.22] 

−  

 
CADTH (Canada) 

1.40 (0.46) 
[0.73 − 2.65]  

1.35 (0.44) 
[0.71 − 2.57] 

0.26 (0.25) 
[0.04 − 1.72]     

 0.34∗∗ (0.08) 
[0.21 − 0.57]  

0.35∗∗ (0.08) 
[0.21 − 0.56] 

0.17∗∗ (0.16) 
[0.03 − 1.02]     

 
SMC (Scotland) 

0.94 (0.25) 
[0.71 − 2.14] 

0.92 (0.24) 
[0.55 − 1.55] 

1.0 (0.73) 
[0.24 − 4.18]     

 0.64 (0.14) 
[0.39 − 0.94] 

0.60 (0.14) 
[0.39 − 0.94] 

0.93 (0.62) 
[0.25 − 3.42]     

Drug 
Attributes 

Oncological Drug − 
1.11 (0.24) 

[0.72 − 1.71] 
1.02 (3.14) 

[0.62 − 1.70]     
 

− 
1.34 (0.25) 

[0.92 − 1.94] 
1.29 (0.27) 

[0.86 − 1.96]     

𝑟𝑒𝑓. = 𝑁𝑜 Orphan Status − 
1.25 (0.31) 

[0.77 − 2.02] 
1.31 (6.89) 

[0.77 − 2.23]     
 

− 
1.44† (0.29) 
[0.97 − 2.14] 

1.49† (0.32) 
[0.98 − 2.29]     

 Accelerated Approval − 
1.31 (0.365) 
[0.77 − 2.21] 

1.20 (0.77) 
[0.65 − 2.23]     

 
− 

1.19 (0.26) 
[0.77 − 1.82] 

1.13 (0.28) 
[0.71 − 1.83]     

Interaction 
Terms  
Ref.
=  HAS (France)
×  𝑅𝐶𝑇𝑡1

 

NICE (England) ×  𝑅𝐶𝑇𝑡1
 − − 

4.29∗ (3.34) 
[1.02 − 18.0] 

 
− − 

4.12∗ (2.73) 
[1.12 − 15.11] 

IQWiG (Germany) ×  𝑅𝐶𝑇𝑡1
 − − −  − − − 

CADTH (Canada) ×  𝑅𝐶𝑇𝑡1
 − − 

 6.77† (6.89) 
[0.92 − 49.78] 

 
− − 

 2.18 (2.04) 
[0.35 − 13.65] 

SMC (Scottland) ×  𝑅𝐶𝑇𝑡1
 − − 

0.98 (0.77) 
[0.21 − 4.55] 

 
− − 

0.65 (0.46) 
[0.16 − 2.62] 

 Obs (#) 675 675 578  675 675 578 
 Groups (#) 238 238 237  238 238 237 
 Wlad 𝐶ℎ𝑖2 57.53∗∗∗ 58.14∗∗∗ 20.6∗∗∗  74.37∗∗∗ 79.27∗∗∗ 35.7∗∗∗ 
Values: Odd-Ratio (STDEV) [95% confidence intervals] | Significance:  **  Significant at the 1% level , *  Significant at the 5% level, †  Significant at the 10% level 
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To investigate the effect of evidence type on the specific recommendation provided by each 

HTA agency, in the models presented in panel (B) of the table, we treated each type of 

recommendation separately, placing them on an ordinal scale in which positive 

recommendations are at the top, restricted recommendations are in the middle, and negative 

recommendations are at the bottom. Subsequently, we applied a mixed ordered logit model to 

investigate the effect of evidence type on the probability of a drug receiving a reimbursement 

recommendation that is one "level higher” than the recommendation that would have been 

received in the absence of such evidence. That is, we estimated the marginal effect of evidence 

type in relation to the three recommendation statuses. The results show that  in total RCT 

evidence makes a drug twice more likely to receive a recommendation that is one level higher. 

This effect is four times stronger for NICE than for HAS. For the other agencies, however, no 

significant difference was detected.  

2.4 Discussion 

Confirming our hypothesis, the results of this research indicate that the type of available 

supporting evidence is predictive of both the evaluation status and reimbursement 

recommendation provided by the HTA agency. In most cases in which the HTA agency can 

select the drugs to be evaluated through the HTA pathway, it is likely that it will select drugs for 

which there was RCT evidence supporting their efficacy at the time of market approval. 

Therefore, the preliminary assessment can be regarded as a latent mechanism for screening out 

drugs with no RCT evidence. This finding supports the concern raised above: looking at HTA 

decisions alone, as previous studies have done, does not provide a complete understanding of 

HTA agencies’ position on RCT evidence. 

Moreover, as we expected, the results show not only that the probability of being evaluated is 

higher for drugs with RCT evidence at market approval but also drugs with RCT evidence are 

more likely to receive favorable HTA recommendations after appraisal than drugs with other 

types of evidence. However, the magnitude of this effect is not consistent across countries and 

is strongest in IQWiG, CADTH, and NICE. The results in this context also indicated that 

evidence type is a better predictor of the probability of receiving a non-negative recommendation 

than of the specific type of recommendation. In light of the above, assessment of the relationship 

between the findings of the two parts of the analysis it is possible that drugs with no RCT 

evidence are filtered out because they are perceived as having less potential to receive a positive 

assessment if they were evaluated. 
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Comparison of the quantitative results regarding actual policy and the qualitative findings 

regarding the stated policy in official documents reveals a low degree of compatibility. For 

example, CADTH and NICE expressed the most pluralistic views concerning admissible types 

of evidence for evaluating effectiveness. Still, in investigating actual decisions made by those 

agencies, the magnitude of the effect of RCT evidence on the probability of receiving favorable 

results those agencies them was one of the strongest. In addition, the filtering of non-RCT 

evidence during the pre-screening phase was particularly significant for CADTH.  

Inconsistency in the other direction may be identified for IQWiG. Investigation of the agency’s 

official documents reveals that IQWiG has firmly opposed the idea of using non-RCT evidence 

to support claims of effectiveness. However, this agency operates in a regulatory environment 

that applies bypass mechanisms to allow orphan drugs market access, even when no relevant 

evidence is available. In the next chapter, we will discuss the possible origins of these 

discrepancies in detail. 

Before concluding, it is necessary to mention some limitations of the analysis presented above. 

First, drugs without RCT evidence  may have been filtered out as early as at the market approval 

stage. Because we do not have information on drugs that were refused market approval, this 

cannot be ruled out. However, it should be noted that if this is indeed the case, the effect observed 

in this analysis will only be strengthened. That is, if approved drugs with no RCT have unique 

characteristics, those characteristics are likely to correlate, at least to some extent, with receiving 

a positive assessment during the HTA process. 

Second, HTA recommendations are based on various considerations, not only effectiveness 

assessments. Other types of uncertainties, such as those regarding incremental cost-effectiveness 

ratios, long-term safety, durability, and social, legal and ethical values, may affect the final 

recommendations. Therefore, we want to stress that in the above analysis, we are only interested 

in investigating whether evidence type is a predictor of reimbursement recommendation, thus 

serving as   indicator of HTA agencies’ attitudes toward different types of evidence. That is, we 

do not seek to make an argument regarding causation. 

In light of the investigation of the role of RCT evidence in the HTA process as presented in this 

chapter, in the final chapter, we perform a normative assessment of existing policies by modeling 

the decision problem faced by decision-makers when formulating public reimbursement 

recommendations, while highlighting the challenges that emerge from the structure of 

uncertainties. Based on this characterization, we investigate the use of the Bayesian approach as 

a possible pathway for addressing this challenge at both the theoretical and practical levels. 
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Chapter III 

As we know, there are known knowns – these are things we know we know. We also know there are 

known unknowns – that is to say we know there are some things we do not know; but there are also 

unknown unknowns – the ones we don’t know we don’t know…. It is the latter category that tends 

to be the difficult one" ~ Rumsfeld 

In the first chapter, we discussed the benefits and limitations of the RCT method, concluding 

that the sharp distinction between different types of evidence in the hierarchy of evidence and 

the role of RCT evidence within it cannot be fully justified on normative epistemic grounds. 

Subsequently, we empirically investigated the role of RCT evidence in the context of 

formulating drug reimbursement recommendations, as described in the second chapter. The 

findings from the second chapter suggest that while RCT evidence is recognized as valuable 

by policymakers, the extent of their acceptance as a legitimate source of evidence in actual 

decisions is still limited and it is inconsistent across countries. In this chapter, we aims to 

critically assess the current decision-making practices, while promoting a better understanding 

of the challenges involved in effectiveness assessments. Equipped with this understanding of 

those challenges we turn to discuss a possible framework for addressing them.  

When looking at drug reimbursement decisions, coverage recommendations are susceptible to 

two types of errors with a trade-off between them: Providing a positive recommendation for an 

ineffective drug gives rise to a type I error; refusing coverage to a beneficial treatment results 

in a type II error. Facing the task of formulating reimbursement recommendations, decision 

makers are required to balance the concerns associated with each type of potential error. Over-

conservative approaches regarding the type of admissible evidence may result in a large 

amount of type II errors, while over-incorporative practices will contribute to an increased 

incidence of type I errors.  

As indicated by the findings of the previous chapter, medications without supporting RCT 

evidence are less likely to be evaluated under the HTA process or to be granted a favorable 

coverage recommendation once appraised. This suggests that when facing substantial 

evidential uncertainty, HTA reviewers, who are sensitive to type I errors, prefer to suspend 

judgment until RCT evidence becomes available.  

However, reflecting on the current decision-making practices, it is important to note that 

postponing the decision is not cost-free and that suspending judgment is a value-laden decision 

in and of itself. Such a decision involves sacrificing the welfare of current patients for the sake 

of reduced uncertainty in the treatment of future patients. This point was highlighted by 
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Claxton (2005) who has been serving as a member of the NICE appraisal committee for two 

decades:  

“…demanding the use of RCT evidence ignores the usefulness of other sources of information. 

For example, suppose a well-conducted observational (nonrandomized) study suggests that a 

treatment for a terminal illness is effective. Does it make sense to withhold this treatment from 

the population until a ‘proper’ RCT can be conducted?” (page 94; bold added, MK).  

Moreover, as noted in the first chapter, in some cases, conducting an RCT is not feasible due 

to ethical reasons or because of a small target population size. In those instances, it is not likely 

that the results of an RCT would be available at a matter of time, so waiting for better evidence 

is not much help. As we have seen, some countries like Germany try to alleviate this difficulty 

by establishing exceptional coverage routes designated for such cases. Nevertheless, those 

semi-automatic mechanisms may lead to an inconsistent policy and may lack proper 

consideration of important hazards, therefore making them especially vulnerable to type II 

errors. 

The evaluation of actual policy, thus, suggests that policymakers are struggling to balance the 

risks regarding the two types of errors. What is needed to better address these competing 

concerns, so it seems, is an integrated, holistic structure of the entire body of evidence which 

incorporates various elements and includes uncertainties at different levels, the degrees of 

relevance of the evidence, and the magnitude of potential benefits and losses. 

Unfortunately, the lexical method of evaluation characterizing many EBM practices does not 

allow for such a weighing. First, it treats evidence in a discrete manner rather than as existing 

on a continuum. It therefore does not allow for trade-offs between different types of evidence 

or between evidence of the same type but of different strength. An RCT may be performed 

poorly (e.g., conducted on a small study population or not involving a masking strategy) or it 

may not be relevant for answering the question of interest due to the type of comparator, the 

specification of endpoints, or issues related to generalizability and external validity.37 On the 

other hand, a well-conducted observational study can provide valuable data. While non-RCT 

evidence is more susceptible to bias, assigning that type with zero (or close to zero) weight 

when those are the only evidence available seems unreasonable. 

 
37 From the analysis of the data listed in the previous chapter, 32.7% of the RCTs used for efficacy assessment 

for market authorization were open label and 30.2% did not involve an active comparator.  
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Moreover, not only does the decision process following the classical hierarchy of evidence not 

allow for the weighing of different types of evidence, it also does not capture possible trade-

offs between the level of potential benefits and the level of uncertainty. When the potential 

benefit is substantial, the risk we are willing to take might be more significant in comparison 

to cases in which the potential benefit is minor. Ruling out certain options based on the types 

of evidence before their potential benefits have been considered, in this sense, may result in 

sub-optimal policy decisions. 

In light of the above, one may wonder why the use of the hierarchical method, despite its 

apparent shortcomings, is still dominant—either explicitly or implicitly—in evidence 

assessment processes for supporting reimbursement decisions. From the investigation of 

regulatory agencies’ documents noted in Chapter II, we can conclude that in most cases, the 

reason for current practices is not due to a lack of awareness of the limitations of RCTs nor 

does it is a result of denial of the potential value of non-RCT evidence in providing relevant 

information. This gap between stated and actual policies implies that the failure to establish 

appropriate mechanisms for integrating and weighing evidence is rooted in a deeper issue. As 

we observed in the previous chapter, the difficulty in establishing mechanisms for weighing 

evidence seems to be particularly evident in cases in which adequate RCT evidence to support 

effectiveness claims is unavailable, namely when the body of evidence is limited and the level 

of uncertainty is high. 

To promote a better understanding of the origins of the difficulty in establishing appropriate 

mechanisms for weighing evidence of different types, in the following section we take closer 

look at the types of uncertainties involved in reviewing evidence of clinical effectiveness. 

3.1 Two Types of Uncertainty 

Uncertainty is a key property of many policy problems and the object of investigation in many 

fields including statistics, psychology, law, economics, and philosophy. However, the concept 

of uncertainty is elusive and complex. Its variety of uses and meanings makes the task of 

providing a clear and coherent definition for it especially challenging (see Cynfin, 2015). In 

this context, we will distinguish between two types. 

The first type can be referred to as stochastic uncertainty (also known as “aleatory uncertainty” 

or “first-order” uncertainty). This is associated with random variability in the outcomes within 

the sample size, such as the one observed when flipping a coin. The second type of uncertainty 
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is known as “Knightian” or “epistemic” uncertainty.38 This kind, first formulated by Knight 

(1921), does not result from randomness but rather from the lack of information or knowledge.  

In reviewing clinical evidence, both types of uncertainties can be traced: As scientists who use 

statistical analysis aim at inferring parameters from data samples, a random error may result in 

a gap between the estimated parameter and the true parameter, thus giving rise to first-order 

stochastic uncertainty. Provided that this type of uncertainty is tightly connected to the idea of 

variance in the sample mean, it is reduced as the sample size increases to infinity (Marchau et 

al., 2019). 

However, along with this type of “chancy” uncertainty, the evaluation of clinical evidence 

involves uncertainty of the second type as well. This uncertainty stems from the lack of 

knowledge that is associated with the construction of the model itself and with the causal ties 

underlying the relationships among variables in particular. In the context of clinical trials, the 

epistemic uncertainty is related to our confidence in the quality of evidence or to the estimation 

of the extent of potential bias. As highlighted in the first chapter, given the skeptical attitude 

of the medical community toward the establishment of proper theoretical understanding of the 

causal mechanism governing biological processes, we cannot rule out the influence of 

unknown intervening variables by merely observing health effects following treatment 

(Manski, 2007). Therefore, when supporting RCT data are unavailable, the scope of epistemic 

uncertainty in the quality of evidence may be substantial. As this kind of uncertainty is the 

result of insufficient knowledge, it may be reduced by acquiring additional clinical information 

of “good” quality. However, it cannot be eliminated by simply enlarging the sample size within 

an experiment (O’Hagan, 2004).39  

When the dominant type of uncertainty surrounding policy-issues is the result of stochastic 

variation, the probabilities are known from observations and policymakers may guide their 

decisions by referring to alternatives that are optimal in expectations. However, optimizing 

stochastic outcomes under second-order, epistemic uncertainty is much more challenging since 

 
38 This is also known as “second-order” uncertainty, “structural” uncertainty, and “deep” uncertainty. These 

terms are not completely similar and in different contexts there may be subtle distinctions among them. However, 

these distinctions are not significant in assessing the issue we are opening. Therefore, for our discussion, these 

concepts will be perceived as substitutes. 

39 However, having a robust body of evidence (that is, enlarging the number of experiments) may mitigate 

uncertainty. As the number of relevant studies and replications increase, so do our degrees of confidence in the 

parameter obtained. For this reason, meta-analyses and systematic reviews are considered valuable tools for 

effectiveness assessments. 
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at least some of the objective probabilities are unknown; therefore, measures of uncertainty 

cannot be easily quantified using classical statistical tools.  

A famous example offered by Ellsberg can help to better understand the distinction between 

two types of uncertainties and demonstrate the challenges it poses for decision-making 

processes: Ellsberg (1961) presented an experiment involving a decision-maker that is 

gambling over prospective prize under partial probabilistic knowledge. The experiment 

involves an urn with 90 balls of which 30 are red. The remaining 60 are either black or yellow. 

The experimenters are presented with the following four lotteries: 

Table 3.1 The Ellsberg Paradox  

 𝟑𝟎 𝟔𝟎 

 𝑅𝑒𝑑 𝐵𝑙𝑎𝑐𝑘  𝑌𝑒𝑙𝑙𝑜𝑤 

𝑳𝟏 100$ 0$ 0$ 

𝑳𝟐 0$ 100$ 0$ 

𝑳𝟑 100$ 0$ 100$ 

𝑳𝟒 0$ 100$ 100$ 

 

Note that in this decision problem two types of uncertainties are involved: on the one hand 

there is first-order uncertainty regarding the color of the ball that will be randomly drawn from 

the urn. At the same time, as the objective distribution of the yellow and black balls is only 

partially known, the experimenters are experiencing additional, second-order uncertainty. 

When analyzing the decision problem using classical decision theory, 𝐿1 and 𝐿2 are expected 

to provide similar payoffs, except for the left column, and so does 𝐿3 and 𝐿4 Because the result 

in the left column is the same for each pair of options, minimal requirement of consistency 

dictates that the experimenters should express the same preference with respect to each pair. 

That is, if the experimenter prefers 𝐿1 ≽ 𝐿2, she must also prefer 𝐿3 ≽ 𝐿4 (See below the 

discussion of the expected utility model).  

However, presented with the above lotteries, participants typically prefer 𝑳𝟏 ≽ 𝑳𝟐 and            

𝑳𝟒 ≽ 𝑳𝟑. This seemingly irrational behavior was described by Ellsberg as “uncertainty 

aversion” or “ambiguity aversion”.  
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While some have suggested psychological interpretation of this so-called violation of 

rationality, Ellsberg sought to adhere to the rational interpretation of the behavior that emerges 

from the experiment40, suggesting that when such second-order uncertainty, or "ambiguity", is 

involved, different decision situation takes place, and therefore the existing decision rules are 

inappropriate for solving the optimization problem.41 

Analogously, in the context of reviewing clinical evidence, decision-makers are faced with 

first-order uncertainty pertaining to the observed variability in the degree of treatment effect 

between individuals (such variability may be observed in the results obtained from an RCT as 

well as from those obtained from other sources). Unfortunately, when there is a second-order 

uncertainty stemming from a lack of knowledge regarding the extent of possible bias, the 

classical statistical methods are insufficient to guide policymaking for resolving first-order 

uncertainty.  

In view of the inadequacy of classical statistical tools for managing cases in which substantial 

epistemic uncertainty is involved, using the hierarchical method of evidence ranking within 

drug regulatory processes can be regarded as a heuristic attempt to bypass this challenge. 

Endorsing a hierarchy of evidence in the context of public decision-making gives rise to a two-

stage decision process; According to the lexical logic underlying the hierarchical use of 

evidence, as a first step one chooses the “best” evidence, where the concept of “best evidence” 

refers to the type of evidence that would allow as to eliminate (or at least minimize) the level 

of second-order uncertainty involved in the assessment. As RCT evidence is characterized by 

a lower risk for the influence of possible unknown confounders, the extent of epistemic 

uncertainty involved in their evaluation is lower, and thus they are regarded as “better” in terms 

of their quality compared to others.  

In the second stage, being left with a body of “best” evidence characterized by a minimal level 

of epistemic uncertainty, one can relatively straightforwardly tackle the first-order measurable 

uncertainty using standard statistical analysis tools. The distinction between the two types of 

uncertainties presented above, therefore, can shed some light on the motivation behind the 

 

40 Using Ellsberg’s own words: “…None of the familiar criteria for predicting or prescribing decision-making 

under uncertainty corresponds to this pattern of choices. Yet the choices themselves do not appear to be careless 

or random. They are persistent, reportedly deliberate, and they seem to predominate empirically; many of the 

people who take them are eminently reasonable, and they insist that they want to behave this way.” (page 251)  

41 We should note that Ellsberg originally used his "paradox" as an argument against the Bayesian approach. For 

the purpose of the discussion, we used the example to clarify the distinction between the different types of 

uncertainty. Later in the discussion, we will also discuss the criticism that is reflected in Ellsberg's example with 

regard to the Bayesian decision-making models. 
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common practice and provide a possible explanation of the appeal of using the hierarchical 

method in formulating reimbursement recommendations, despite its evident drawbacks. 

However, it should be evident by now that the use of such a tool for alleviating the difficulty 

of managing epistemic uncertainty comes at a sizable cost. Using Nancy Cartwright’s words, 

“Grading schemes [such as the evidence hierarchy] don’t combine evidence at all—they go 

with what’s on top. But it seems to me to be daft to throw away evidence. Why are we urged to 

do it? Because we don’t have a good theory of exactly why and how different types of evidence 

are evidence and we don’t have a good account of how to make an assessment on the basis of 

a total body of evidence. Since we don’t have a prescription for how to do it properly, we are 

urged not to do it at all. That seems daft too. But I think it is the chief reason that operates. 

That is why the philosophical task is so important” (Cartwright et al., np; cited in Blume & 

Borgerson, 2011, page 230). 

The concept of epistemic uncertainty is “intimately linked to the relationship between theory, 

knowledge, and evidence” (Djulbegovic, 2011; page 301). Therefore, providing a coherent 

theoretical account of this type of uncertainty within a decision-analytical framework plays a 

vital role in establishing more justified mechanisms for evidence assessment. On the technical 

level, such mechanisms should allow for the representation of uncertainties on different levels 

while providing tools for weighing and integrating benefits and evidence from various sources. 

In the following section, we will explore the use of Bayesian methods as a potential pathway 

for meeting this challenge on both the theoretical and practical levels. 

3.2 Bayesian Analysis–Introduction 

The Bayesian method is a branch of statistical analysis that provides an elegant framework for 

dealing with uncertainty at various levels. Traditionally, statistical methodology has consisted 

of two major, competing, probabilistic theoretical approaches. The first is the frequentist 

approach, which interprets probabilities as relative frequencies of empirical events. The second 

is the Bayesian theory according to which probabilities are rational degrees of belief.42 

Assuming a parameter θ that is to be estimated, the Bayesian method consists of three main 

elements. 

The first element is that of prior beliefs, referring to the subjective probability distribution 

denoted by 𝜋(𝜃), assigned to the parameter by the agent before considering the data. The 

 
42 Rational degrees of belief 𝑐(∙) satisfy the Kolmogorov probability axioms: Given set of events {𝐴1 … 𝐴𝑛} and 

sample space Ω, for any event AI in Ω : (1) c(A) 0 (2) 𝑐(Ω) = 1 (3) P(A1 A2 … ) = ∑ P(Ai)
∞
i=1 . 
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second is that of posterior beliefs, denoted by 𝜋(𝜃|𝑥1 … 𝑥𝑛), which represents the agent’s 

subjective degrees of confidence in the parameter distribution after incorporating the evidence. 

The third element is a discrete likelihood function, 𝑓(𝑥1 … 𝑥𝑛│𝜃), which measures the support 

provided by the observed data for possible values of the parameter. In essence, Bayesian 

analysis is a method of linking the prior probability to the posterior probability. In particular, 

under this framework, as evidence is accumulated, the degrees of beliefs are updated in 

accordance with Bayes rule: 𝜋(𝜃|𝑥1 … 𝑥𝑛) ∝ 𝑓(𝑥1 … 𝑥𝑛│𝜃)𝜋(𝜃).  

The Bayesian interpretation of probabilities has some appealing theoretical and technical 

properties for modeling policy problems and for supporting policy decisions in the field of 

medicine. First, Bayesian thinking allows for the representation of both stochastic uncertainty 

and epistemic uncertainty under a unified probabilistic theory. In the Bayesian approach, all 

unknown parameters are treated as random variables following a certain probability 

distribution. Therefore, probabilities can be assigned to all types of uncertainties including 

those associated with non-empirical events for which relative frequencies cannot be calculated. 

Treating probabilities as degrees of beliefs that are treated in themselves as random variables 

allows for the reduction of all kinds of uncertainties to a single quantifiable type. Considering 

the case of epistemic uncertainty surrounding clinical evidence due to possible bias, in the 

absence of sufficient knowledge as to the objective probability distribution of the parameter, a 

Bayesian is expected to use his or her own subjective belief to guide the decision. Such 

judgment is formed using the (partial) ex-ante knowledge available by the time of the decision. 

This way, the agent’s beliefs about possible bias are integrated with the individual’s beliefs on 

stochastic outcomes, ultimately providing a quantifiable measure of uncertainty under a single 

scale (O’Hagan, 2004). 

Moreover, the Bayesian inference provides a more direct answer to questions relevant to 

medical research. With the frequentist approach, the parameter 𝜃 is treated as a fixed unknown 

and the data are considered random; in the Bayesian approach, all parameters are random 

variables and the data are considered fixed. Thus, in contrast to the measures of the frequentist 

approach, such as p-value and CI which provide the probability of obtaining data as extreme 

as the observed data when the hypothesis is true, the Bayesian inference involves directly 

calculating the probability of the parameter given the data 𝑝(𝜃|𝑋) (Lee & Chu, 2012). 

Another important advantage of the Bayesian approach, in the context of evidence assessment, 

is its integrative nature. The Bayesian approach requires that all relevant knowledge be 



56 

 

incorporated in the formation of posterior beliefs. Hence, it can can serve as a better theoretical 

platform for synthesizing evidence from multifarious sources, including theoretical 

background knowledge, real-world data, observational clinical trials, and RCTs. The picture 

arising from the Bayesian method is, therefore, that of a coherent “web” of subjective beliefs 

mutually supporting each other, therefore allowing for holistic evaluation of the entire body of 

evidence. 

Finally, the Bayesian notion of probability is integrated into classical expected utility decision 

theory models, establishing a framework for the consideration and weighing of both 

uncertainties and benefits to inform decision makers and to support decision-making 

processes.43 

From all of the above, we can conclude that the Bayesian approach constitutes a “richer” 

language for decision-making processes. The theoretical framework provided by it allows for 

a single, quantitative representation of various types of uncertainties and it is ideally suited for 

evaluation of the entire body of evidence on the technical level. This makes the Bayesian 

framework an especially promising candidate for addressing the problem of clinical 

effectiveness assessments in the context of formulating reimbursement recommendations. In 

the following section, we review some applications of the Bayesian method in clinical research 

and policymaking in practice.  

3.3 Application of Bayesian Tools in Clinical Medical Research 

3.3.1 Bayesian Clinical Trials  

Over the past 50 years, frequentist statistics has been the dominant method in conducting 

clinical trials, based on the pioneering work of Neyman and Pearson (1933). Recently, 

however, the growing acknowledgment of the potential advantages associated with the 

Bayesian method along with computational advancements have contributed to the increasing 

utilization of Bayesian tools for medical research purposes.  

The first application of Bayesian tools to be discussed refers to the generation of clinical 

evidence. In this context, lately the conduction of Bayesian clinical trials have become 

common. The results of those trials are presented in the form of the posterior probability of the 

parameter which is usually defined as the probability of observing a certain endpoint given the 

 
43 The frequentist theory of significance cannot be incorporated into a theoretical decision framework as it treats 

probabilities as relative frequencies of empirical events. When those are unknown, expected utility cannot be 

calculated. See Fisher’s critique of Wald: “The attempt to reinterpret the common tests of significance used in 

scientific research as though they constituted some kind of acceptance procedure and led to ‘decisions’ in 

Wald’s sense, originated in several misapprehensions and has led, apparently, to several more” (Fisher, 1955).   
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data 𝜋(𝜃|𝑥1 … 𝑥𝑛). As clinical trials are rarely created on their own, Bayesian clinical trials 

incorporate background knowledge in the formation of the prior distribution 𝜋(𝜃). This 

knowledge is obtained from various sources including information garnered from previous 

research phases, basic theoretical science, and observational data, among others. One of the 

main advantages of utilizing Bayesian analysis methods in performing clinical studies, 

therefore, is related to the explicit incorporation of background knowledge that renders a more 

transparent and reproducible use of all available evidence in deriving and interpreting study 

results (Lee & Chu, 2012).Moreover, while frequentist measures, such as CI and p-value are 

tied to a particular study design and cannot be compared across experiments, Bayesian analysis 

methods are more flexible in their evaluation of clinical data, and are more suitable for 

comparing the results of different studies and their designs may be adapted as data accumulate. 

On the regulatory level, the attitude of market authorization bodies toward the use of Bayesian 

clinical trials is cautious. However, policymakers have recently been more receptive to the idea 

of Bayesian clinical studies as an admissible source for efficacy assessment within the context 

of regulatory decision-making. In 2010, the FDA released guidelines for using Bayesian 

methods in assessing medical devices (FDA, 2010). As of today, these guidelines refer to 

medical devices but they do not apply to medicines. As the use of Bayesian methods in the 

effectiveness of evaluating drugs is expanding, we can expect the construction of more 

comprehensive regulatory structures to be developed accordingly. 

Bayesian analysis tools can be technically utilized to analyze the data obtained from 

experiments with an RCT study design as well as others. It should be noted, however, that from 

the philosophical perspective, the Bayesian logic is not compatible with the idea of randomized 

allocation. Bayesianism dictates that the experimenter will allocate participants according to 

her prior knowledge rather than doing so randomly. As Savage stated 60 years ago, an ideal 

Bayesian subjectivist “would not need randomization at all. He would simply choose the 

specific layout that promises to tell him the most” (Savage, 1962; page 34). From this 

perspective, randomization has no epistemic benefit, so assigning participants to a control 

group is perceived as a waste of resources. In light of the above, if we recall the example of 

ECMO presented in the first chapter, assigning patients randomly to either a treatment group 

or a control group when a substantial body of knowledge as to the effectiveness of the 

procedure already exists is not only unethical, it is also regarded as irrational from a Bayesian 

point of view.  
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As Savage himself admitted, though, a randomized allocation may be accepted as admissible 

by Bayesians on pragmatic grounds when concerns regarding selection bias arise (Savage, 

1962). In this context, the distinction presented in the first chapter, between epistemic bias 

stemming from unknown confounders on the one hand, and psychological attributes leading to 

bias on the other, can be useful. While randomized allocation cannot be perceived by a 

Bayesian as a satisfactory way of addressing the concerns of the first type—that is, for avoiding 

causal fallacies stemming from potential confounders—it can nevertheless be accepted as a 

useful tool for addressing selection bias, which is related to the second type of concern. In 

Bayesian terms, RCTs are perceived as a “mixed” strategy over possible experimental 

allocation; this is never strictly optimal but may, nevertheless, be applied under certain 

circumstances as a second-best option.44 

3.3.2 Bayesian Meta-Analysis and Evidence Synthesis  

The second application of Bayesian tools in drug regulation is not related to the process of 

generating new clinical evidence but rather it pertains to the integration of various types of 

existing evidence to support decision-making processes when facing a considerable body of 

evidence. Bayesian tools are well-suited for evaluating the degrees of coherence and 

consistency of the entire body of evidence (Higgins & Green, 2011; Woertman et al., 2014; 

Sutton & Abrams, 2001). As a result, in the past decade, Bayesian methods have become more 

prominent in conducting meta-analyses and syntheses mainly through the use of hierarchical 

Bayesian models (e.g., Prevost et al., 2000) and the Markov Chain Monte-Carlo method (e.g., 

Chen, 2009). Bayesian meta-analyses include explicit specification of the prior distribution for 

the “between studies” mean effect and standard deviation, as well as the estimation of the extent 

of possible bias. In light of this specification, studies that are perceived as vulnerable to 

potential bias can be “discounted.” Thus, observational studies may be assigned lesser weight 

than RCTs depending on their perceived quality and the type of research question associated 

with each. This specification process, we should note, is inevitably guided, at least to some 

extent, by subjective judgment. 

 
44 In recent work, Banerjee et al. (2017) modeled a Bayesian experimenter facing adversarial evidence (for 

example, a reviewer for market approval agency or an HTA agency). Assuming that the decision-maker is 

maximizing a mixture of her subjective expected utility and the welfare of an adversarial audience with non-

common prior, and that he or she is placing non-zero weight on satisfying the audience, an RCT can turn can be 

an optimal solution if the experimenter is assigning non-zero weight on satisfying the audience.  
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3.3.3 Decision-Theoretic Analysis Applications 

Expected Utility Theory  

Using Bayesian tools to perform meta-analyses allows for trade-offs between degrees of 

confidence in different types of evidence. However, in formulating reimbursement decisions 

at the broader level, one may want to allow for trade-offs between the level of benefit and level 

of uncertainty in the quality of evidence as well. Here, too, the Bayesian method may offer a 

better framework for weighing different elements of the decision problem against each other. 

Such tools can be especially useful when facing a limited body of evidence and when RCT 

data are unavailable. 

In order to understand how Bayesian tools can support decision-making in such cases, we will 

first briefly review the classical Bayesian expected-utility model. This model, as was 

formulated axiomatically by Savage45 (1954), consists of three elements:  

1. States of the world 𝑆(𝑤1, 𝑤2, 𝑤3 … 𝑤𝑛). This indicates the object of uncertainty which 

represents an exhaustive list of possible scenarios. Each state is a full description of a possible 

world so that under situations guided by perfect information, if true, the consequence of each action 

is known. In standard decision theory, the state of the world can be represented by a subjective 

probability distribution concerning the agent’s degree of belief that the description of each given 

possible world will turn out to be the “actual” state of affairs. 

2. Consequences [𝐶(𝑐1, 𝑐2 . . . 𝑐𝑛)]. Consequences are defined as, “anything that might happen to 

a person” (Savage, 1954; page 13). The consequences embody all elements relevant to the agent’s 

welfare for each choice of action in any given world.  

3. Acts [𝐴(𝑎1, 𝑎2, 𝑎3)]. Acts are courses of action available to the agent. The set of actions is a 

function from set S to set C; i.e., it attaches a consequence to each state of the world: 𝐴(∙): 𝑆 → 𝐶. 

Under the classical decision theory model, as formulated in Savage’s representation theorem, 

if the agent’s preferences satisfy minimal axioms of rationality,46 that person’s behavior can be 

represented as if it maximizes expected utility relative to a unique subjective probability 

function over the possible states and a utility function (which is unique up to linear 

transformation) that assigns a numerical value to each possible consequence in each state: 

 
45 Savage’s work was built on the foundations set by the subjective theory of probability developed by Ramsey 

(1926) and the expected utility theory of von-Neumann-Morgenstern (1944). However, the framework provided 

by Savage is more convenient to work with and it is widely accepted by economists due to its suitability for the 

purposes of economic analysis. 

46 The axioms are: Transitivity (𝑖𝑓 𝑎1 ≻ 𝑎2 𝑎𝑛𝑑 𝑎2 ≻ 𝑎3 𝑡ℎ𝑒𝑛 𝑎1 ≻ 𝑎3); Completeness [∀, 𝑎𝑗 ∈ 𝐴 (𝑖 ≠

𝑗), 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎𝑖 ≻ 𝑎𝑗 , 𝑎𝑖 ≺ 𝑎𝑗 , 𝑜𝑟 𝑎𝑖 = 𝑎𝑗]; Sure-Thing Principle (if a person prefers 𝑎1  𝑡𝑜 𝑎2, knowing whether a 

consequence 𝑐 in another world is obtained, then he or she should prefer 𝑎1 𝑡𝑜 𝑎2 even if that person knows 

nothing about the consequence 𝑐); and the Rectangular Field Assumption.  
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𝑀𝑎𝑥(𝐸(𝑎𝑖)) = ∑ (𝑝(𝑤𝑖) ∙ 𝑢(𝑐𝑖))𝑛
𝑖=1 . 

In line with the expected utility model, a simplified version of the decision problem of 

providing a reimbursement recommendation can be formulated as follows:  

The decision-maker is facing one group of patients and two treatments 𝑇 = {𝑡0, 𝑡1} where 𝑡0 is 

the status quo treatment (alternative, possibly inferior, treatment or no treatment) and 𝑡1 is a 

novel treatment. The decision maker can provide a positive recommendation for the 

reimbursement of 𝑡1 or a negative recommendation (thus, staying with the possibly inferior 

treatment 𝑡0). The set of acts, therefore, would be defined as 𝐴 = {𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒}. For 

simplicity, we will assume that there is not a competing group of patients and that the status 

quo treatment 𝑡0 is “no treatment,” therefore providing no health benefits and involving no 

additional, marginal costs. Furthermore, we shall assume perfect knowledge as to costs and 

potential utilities associated with 𝑡1 as well as the magnitude of its long-term effect.  

The decision maker is presented with data obtained from a single observational trial, denoted 

𝒟𝑛 = {𝑥𝑖 … 𝑥𝑛} and assigned probability distribution for the parameter 𝜃𝑡𝑖
, measuring the 

average treatment effect of treatment 𝑡𝑖 given the data 𝒟𝑛.47 The degrees of beliefs assigned by 

the decision maker given the data is represented, therefore, by the probability function 

𝑝(𝜃𝑡𝑖
> 0|𝒟𝑛) for the drug being effective and 𝑝(𝜃𝑡𝑖

= 0|𝒟𝑛) for the drug being ineffective.48 

These incorporate both beliefs concerning random variability and beliefs concerning the extent 

of possible bias.  

Each alternative is linked to a health outcome in a possible world. Assuming a utilitarian 

framework, for each individual 𝑗 ∈ 𝐽, outcomes are measured in units of utilities and costs, 

𝑢𝑗(𝜃𝑡𝑖
|𝑡𝑖), 𝑐𝑡𝑖

, which are assumed to be known and agreed-upon49. Finally, as we are concerned 

with decision-making at the population level, we will assume a welfare function that aggregates 

individual utilities 𝑊𝑡𝑖,𝑗 = Σi,j(𝑢𝑗(𝜃𝑡𝑖
|𝑡𝑖), 𝑐𝑡𝑖

). For convenience, the notation for incremental 

social net benefit will be marked as 𝐼𝑁𝐵𝑖={0,1} = 𝑢𝑗(𝜃𝑡𝑖
|𝑡𝑖). In this model, we will consider 

opportunity loss (that is, health benefit foregone) as an actual loss. That is, refusing treatment 

 
47 As we assumed that 𝑡0 was “no treatment” and therefore had no health benefit, any positive health benefit 

ascribed to receiving 𝑡1 would make 𝑡1 superior to 𝑡0.  

48 That is, 𝜃𝑡1
> 𝜃𝑡0

. As the comparator 𝑡0 was set to be “no intervention” and therefore provided no health 

benefit, an additional health benefit (i.e., relative effectiveness) is obtained when 𝜃𝑡1
> 0. Moreover, the 

complementary probability is actually 𝑝(𝜃𝑡1
≤  𝜃𝑡0

) but as we assumed the drug was safe (as indicated by its 

market approval), the inequality was omitted. 

49 In real-world settings, this is, of course, many times not the case. 
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in a state where it is effective will result in a negative incremental net benefit in a similar 

magnitude. In line with the expected utility model, when facing the above decision problem, a 

rational decision maker is expected to maximize expected utility; that is: 

 max
i={0,1}
j=1…n

(∑ 𝑝(𝜃𝑡𝑖
|𝒟𝑛) ∙ (𝐼𝑁𝐵(𝜃𝑡𝑖

) − 𝐶𝑡𝑖
)) 

For illustration, let us consider the following numerical example: The subjective probability 

assigned by the agent of treatment 𝑡1 being effective (that is, the average treatment effect is 

higher than zero) given the data obtained from the trial is 20% and the probability assigned for 

it being ineffective (that is, the average treatment effect equals zero) is 80%. If the drug is 

effective, 65 units of marginal social welfare would be obtained if the decision maker provides 

a positive recommendation and 35 INB units would be lost if a negative recommendation is 

provided. Alternatively, if the drug turned out to be ineffective, 65 INB units would be lost 

when a positive recommendation is granted and no social welfare would be added or lost when 

the decision maker formulated a negative recommendation. As the expected value of a negative 

recommendation [EV(N) = -13] is greater than the expected value of a positive 

recommendation [EV(P) = -15], a rational decision maker would choose to provide a negative 

recommendation. 

Figure 3.2 Numerical Example using Decision Tree  
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Bayesian Value of Information Analysis 

As illustrated by the numeric example above, in its essence, the expected utility model is based 

on the idea of weighing the level of uncertainty against the level of potential benefit, therefore 

providing a more holistic approach for the decision-making processes. The expected utility 

model has another potential advantage: Its theoretical framework may allow us to estimate the 

value of additional information when facing epistemic uncertainty by using the Bayesian value-

of-information (VOI) analysis tool.  

VOI analysis, first formulated by Raiffa and Schlaifer (1961), is a useful analytic framework 

defined as, “a mean of valuing the expected gain from reducing uncertainty through some form 

of data collection” (Wilson, 2015). Regulatory medical policy decisions under uncertainty may 

result in errors potentially imposing substantial costs on the health system. Acquiring more 

information may reduce uncertainty but many times also involve considerable costs. VOI 

analysis allows us to estimate the upper-bound of value that a rational decision maker would 

be willing to “pay” to obtain additional information. Therefore, under this framework, 

information is valuable only if it will cause the decision maker to make a different choice 

compared to the one he or she would have made had the information been unavailable. As such, 

the value of information has the potential to be a vital tool for better addressing epistemic 

uncertainty.  

The Expected Value of Perfect Information (EVPI) is measured as the difference between the 

expected benefit obtained when the decision is made under perfect information and the 

expected benefit of a decision made without perfect information. 

To illustrate the use of VOI in the context of clinical trials, let us consider again the simplified 

decision problem formulated above. This time let us assume that the decision-maker is facing 

stochastic uncertainty due to observed variation in the results obtained from an ideal RCT50.  

Solving the decision tree backward (see Figure 3.3), the expected value, without complete 

information of a positive recommendation as calculated above, is EV(𝑃) = (−15). In the 

perfect information case, 20% of the time,51 the additional benefit is 65; 80% of the time, the 

additional benefit is 0. Therefore, the value of perfect information is expressed as EVPI =

 
50 For the sake of discussion, we will ignore the concerns regarding uncertainty  stemming from generalizability 

issues.   

51 Despite knowing with certainty, the quality of evidence, we considered the EV over a set of patients. The 

percentage, therefore, does not represent uncertainty but the fraction of patients.  
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|13 − (−15)| = 28. That is, we will be willing to “pay” a maximum of 28 units of expected 

value to reduce uncertainty.  

Figure 3.3 Value of Information Analysis Using Decision Tree 

 

Real-World cases are, of course, more complex than the simplified example presented above. 

The common method applied for performing VOI analysis for these cases involves the 

assignment of prior probabilities representing second-order probabilities of the estimate of each 

model’s inputs, followed by incorporating them in a Monte Carlo simulation providing as 

output the distribution of the estimated INB(θ). The EVPI is finally calculated by measuring 

the difference between the estimated standardized posterior mean INB(θ) under full knowledge 

and the point of indifference between the two alternatives of choice under imperfect 

information. Such a method is utilized for various applications in the field of medical research 

and economic evaluation, for, among other things, assessing the benefits of sampling (EVSI)52 

 
52 Expected Value of Sample Information. 
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and for estimating rational costs of collecting the data needed for extrapolation inferences (e.g., 

Claxton, 2001; Heath et al., 2018). 

Alongside these uses, VOI analyses can potentially be utilized to estimate the need for 

additional evidentiary support of existing data in making reimbursement decisions in the face 

of a limited body of evidence. In this context, one may assess the added benefit from collecting 

non-RCT evidence as complementary to existing RCT evidence to reduce uncertainty 

surrounding specific parameters within the model for which RCT provides partial information 

(i.e., parameters that are related to long-term effects or to generalizability of the results).  

At the same time, one may estimate the “value” of RCTs by estimating the additional, expected 

benefit obtained from reducing epistemic uncertainty stemming from possible bias. That is, the 

VOI method can potentially be used for estimating how much one would be willing to “pay” 

in terms of expected benefit to reduce uncertainty as to the quality of evidence. As such, 

Bayesian VOI tools may support the management of epistemic uncertainty in clinical decision-

making processes and mitigate the difficulty in addressing observational studies when the body 

of evidence is limited. In this context, it should be noted that according to the rationale 

underlying the value of information analysis, when the available information is already 

sufficient for making an optimal decision, collecting more information for the sake of reduced 

uncertainty will be perceived as irrational. Therefore, when we are sufficiently confident in the 

quality of non-RCT data available to us, it would be hard to justify the requirement for 

providing costly RCTs, as it is unlikely that additional information would shift our decision. In 

this sense, the use of VOI highlights that the value of RCTs in the context of decision-making 

is not absolute but rather context-dependent. 

3.4 Challenges and Objections 

In evaluating the potential use of VOI analysis for estimating the “value” of RCT, one may 

point to a fundamental difficulty arising from the use of this method as the calculation described 

above requires the formulation of a prior opinion regarding the potential extent of bias. 

However, as was highlighted in the first chapter, we do not have access to this kind of 

knowledge. As the risk of bias stems from the inability to account for unknown confounders 

(that is, it involves factors of “unknown unknowns”), one may argue that turning to the 

subjective beliefs of the agent as to the influence of such unknown factors yields arbitrary 

judgments. Such unwarranted formation of the prior opinion, it can be argued, undermines the 
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credibility of the posterior derived from it and therefore cannot legitimately guide our 

decisions.  

This concern echoes a more general criticism of the Bayesian approach that is related to its 

subjective nature. In particular, some argue that while the Bayesian theory allows for the 

assignment of probability to any possible outcome, it does not provide us with tools to judge 

which probabilities are reasonable to adopt. That is, the Bayesian concept of scientific evidence 

does not provide an account of evidential support (i.e., an indication of the truth of the 

hypothesis) and therefore cannot establish warrant (i.e., a reason to infer the hypothesis) 

(Reiss, 2014). Under the subjective Bayesian framework, as long as the axioms of rationality 

are satisfied, a decision made based on arbitrary beliefs would be considered rational. For 

example, a radical Bayesian subjectivist may come up with any probability between 0 < 𝑝 <

1 for the event of a coin toss yielding tails when the coin is actually balanced. In scientific 

practice, however, we are interested in the actual state of affairs. That is, our beliefs are 

expected to be indicative of the “truth,” at least to a certain extent. As the coin is balanced, 

such degrees of belief will not be accepted as legitimate in the context of scientific inquiry. 

Therefore, a strictly subjective Bayesian analysis may be perceived as ill-suited for scientific-

practical applications of the type we are discussing.  

The problem associated with the subjective nature of the Bayesian approach is especially 

critical when considering the credibility of the prior probability distribution. Under subjective 

interpretation, coherence is the only criterion that can impose constraints on the selection of 

the prior probability. One response in the literature as an attempt to address this challenge is to 

set some rational constraints on degrees of belief. This approach is known as “Objective 

Bayesianism.” Under this framework, while prior distribution cannot be uniquely determined, 

there are some prior distributions that would be referred to as “unreasonable,” or at the very 

least, less reasonable than others. Objective Bayesianism usually incorporates empirical 

constraints, according to which the agent knowledge constrains his or her degrees of belief. 

That is, if the agent has empirical data about the nature of the coin, their degrees of belief that 

it would yield heads on the next toss should be around 50% (Williamson, 2005).53 

 
53 While setting constraints on degrees of belief may alleviate the discomfort associated with the subjective nature 

of the classical Bayesian inference, some argue that the addition of an external criterion to the theory is an attempt 

to “make the Bayesian omelet without breaking the Bayesian egg.” That is, objective Bayesianism involves a 

substantial deviation from Bayesian logic and its theoretical foundations and therefore can no longer be regarded 

as a Bayesian method at all.  
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However, setting empirical constraints on the determination of the prior, however, may raise 

difficulties in cases where the agent does not possess sufficient objective knowledge to 

formulate “appropriate” degrees of belief. On the face of it, the case of estimating the extent of 

potential bias of clinical evidence due to possible unknown confounders appears to be a case 

of this kind. Objective Bayesians would usually respond to this problem by striving to 

minimize the influence of the prior on the posterior when no data are available to support the 

process of eliciting the prior distribution. Such attempts are known as the formulations of “non-

informative priors.” A central approach54 for setting non-informative priors is by following 

Laplace’s principle of insufficient reason [or its generalization under Jaynes’ (1957) 

“maximum entropy” principle]. According to Laplace’s rule, when the data are insufficient for 

justifying the assignment of a specific prior probability, one should assume uniform 

distribution. That is, given 𝑛 mutually exclusive and exhaustive events, the prior probability of 

each event is 
1

𝑛
. 

While this approach may seem promising at first sight, upon closer examination it turns out to 

be problematic. First, “non-informative” priors based on uniform distribution rarely remain 

uninformative under transformation. Consider, for example, the case of two consecutive coin 

tosses—the distribution of the second toss, 𝜙 = 𝜃2, is no longer uninformative. Moreover, using 

uniform distribution would not allow us to distinguish between cases where uniform distribution 

is assumed based on existing knowledge (for example, assuming a uniform distribution of 50% 

after observing the results obtained from repeated coin tosses) and cases in which such 

distribution is assumed due to ignorance. The two cases are fundamentally different on the 

epistemic level, but under the use of a non-informative prior, it would be impossible to tell them 

apart.55 It turns out, therefore, that the translation of all types of uncertainties into a single scale, 

which at first glance was thought of as an advantage of the Bayesian method, come at the cost 

of losing an important distinction between different epistemic states.  

From the above, it seems that the objective Bayesian approach does not provides as with 

algorithmic prescription as to the process of prior elicitation in the face of lack of knowledge. 

 
54 In the literature there are various other suggestions of principles for imposing constraint on degrees of beliefs. 

See, for example, Reflection Principle (Van Frassan, 1984) and Calibration (Williamson, 2010). 

55 This implies that we cannot convert causal knowledge to statistical knowledge as the Bayesian method aspires 

to do in its representation of uncertainty. As was argued by Pearl (2009),“The vocabulary of probability calculus, 

with its powerful operators of conditionalization and marginalization, is simply insufficient for expressing causal 

information” (page 40). 
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Unfortunately, those seem to be exactly the cases we are interested in when addressing the issue 

of the evaluation of clinical evidence.56 

While we are sympathetic with the concern raised above and recognize its force on the 

theoretical level, it is important to be cautious in characterizing its scope with regard to actual 

decision-making and to avoid making too strong a claim. First, it is essential to emphasize that 

in evaluating the criticisms presented above, the theoretical and pragmatic aspects are 

interrelated, but they are not necessarily congruent. For the purposes of this discussion, therefore, 

it would be more convenient to examine the significance of the criticism of the Bayesian 

approach for each level separately.  

On the pragmatic level, one should note that formulating a judgment about potential biases in 

assessing clinical evidence is normally not a case of complete ignorance: With cases in which 

the body of evidence (consisting of either RCT or non-RCT data) is considerable, there are 

yardsticks that can guide our judgment of potential bias—and therefore of specifying the prior—

based on the degree of consistency and coherence with previous findings. For example, the 

reviewer may look for similarities in point estimates and in overlap of confidence intervals 

provided by results from various studies to evaluate the quality of evidence to form such a 

judgment.57 

When the body of evidence is limited, however, the problem of the elicitation of the prior is 

more significant. Nevertheless, considering actual practice, cases in which the degree of belief 

in the estimated treatment effect grow in a vacuum are exceptional. In most instances, relevant 

information can be obtained from theoretical knowledge, expert opinion based on clinical 

experience, and an assessment of effect magnitude. Design features also serve as relevant 

knowledge that can support the determination of the prior regarding potential biases in those 

 
56 We shall highlight that the difficulty in the specification of the prior in the absence of sufficient information is 

not unique to the objective Bayesian approach since the orthodox subjective Bayesian method appears to be 

susceptible to a similar problem as well. When ignorance is involved, many would claim that it would be  

unreasonable to require that the agent would guide his or her decision by setting precise degrees of belief as the 

Bayesian approach dictates. Such an objection has been raised, inter alia, by Gilboa & Marinacci (2016) in their 

discussion of the Bayesian approach, arguing that, “Being able to admit ignorance is not a mistake. It is, we claim, 

more rational than to pretend that one knows what cannot be known” (page 13). It should also be stressed that 

the problem above is not a matter of cognitive incompetence in formulating precise or accurate probabilities under 

these circumstances (which may be the case just as well), but that the normative requirement to do so is in and of 

itself illogical. 

57 The considerations specified by the GRADE framework (Grading of Recommendations Assessment, 

Development and Evaluation rating system), used for presenting a summary of evidence for clinical practice 

recommendations, may be useful in such cases. See the GRADE handbook (2013).  
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cases. All the above can be utilized to inform the formulation of the prior despite it being limited 

and based on partial information.58 

Finally, the use of complementary supportive tools to analyze Bayesian decision-making may 

alleviate the problem concerning the selection of the prior to some extent. Applying sensitivity 

analysis tools, for example, may turn out to be particularly valuable in this context. Such analysis 

includes setting different prior distributions under various assumptions, followed by an 

exploration of their effect on the output of the model. Therefore, the use of such tools may 

contribute to a better estimation of the uncertainty involved in formulating the posterior 

distribution and encourage the calibration of the model’s inputs when necessary (e.g., Hendriek, 

2009).59 

As a final remark, we will say a few words about the evaluation of the problem regarding the 

specification of the prior in light of insufficient knowledge at the theoretical level. It should be 

recognized that even if a practical concern does not arise within the specific context of our 

discussion, the difficulties mentioned above still pose a threat more generally at the theoretical 

level. We shall not discuss the various theoretical considerations that ought to be considered 

when investigating this issue. Notwithstanding, we will briefly note a conceptual framework 

discussed in the literature which has evolved to address the intrinsic problems with the Bayesian 

Orthodox approach as discussed above, while potentially providing an additional advantage at 

the technical level as well. 

This suggested approach, sometimes known as Robust Bayesianism, is regarded by some as a 

generalization of the Bayesian method (Dempster, 1968). Motivated by the problem with the 

specification of the prior in cases in which insufficient knowledge is involved, this method gives 

up the requirement of precise probabilities and turns instead to the use of imprecise probabilities. 

Such a model60 may alleviate the general theoretical concern discussed above, as it avoids 

 
58 It should be noted that the problem of prior characterization may be especially significant at the pragmatic level 

when it comes to performing Bayesian clinical studies. In those situations, the researcher usually has an interest 

in characterizing the prior in a manner that would maximize the likelihood of yielding favorable results (this 

concern holds in general, but it can be especially problematic when it comes to commercial bodies). Explicit 

characterization of the prior and the rationale underlying it to be critically assessed is crucial in this context as 

well (see Teira, 2011). However, as the reviewers of regulatory bodies are perceived as “impartial,” the concern 

for manipulation is not dominant in the context of using Bayesian tools for evidence assessment within regulatory 

processes.  

59 It is also important to note that with the Bayesian approach, the influence of prior distribution is becoming 

less significant as evidence accumulates. 

60 As for today there is no agreed-upon theory of imprecise probabilities and it is suffering from substantive 

problems with regard to constructing a plausible confirmation theory. For an elaborate discussion of imprecise 

probabilities epistemology and the difficulty in constructing a Bayesian Confirmation Theory, see Elkin (2017).  
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arbitrary judgment in formulating the prior distribution in the face of severe uncertainty. This 

framework also captures the distinctive notion of epistemic uncertainty through the use of sets 

of probability measures (Elkin, 2017). It therefore maintains the difference between cases in 

which uniform prior distribution is assigned due to (dis)beliefs and instances in which uniform 

prior distribution is assumed due to ignorance. Besides the better representation of our doxastic 

states at the theoretical level, an additional appealing feature of such a method is at the technical 

level; incorporating imprecise probabilities may support the application of innovative sensitivity 

tools. In particular, it can be useful in conducting more sophisticated forms of sensitivity analysis 

using probability bounds analysis (PBA) which allows the investigator to better communicate 

his or her uncertainty by providing results in bounds on probability distribution (Aughenbaugh 

& Paredis, 2007; Ali et al., 2012). Future research is needed to thoroughly examine the 

theoretical and practical implications of applying such tools in evidence assessment processes. 

To sum up the discussion in this chapter, we have suggested that the use of the hierarchical 

method in clinical effectiveness assessment processes may be understood as the result of a failure 

in accounting for the relationships among clinical evidence, uncertainties, and knowledge of 

different types on the theoretical level and in establishing weighing mechanisms for supporting 

decision-making at the technical level accordingly. 

Given this difficulty, despite its apparent drawbacks, the use of an evidence hierarchy is still 

dominant in public reimbursement decision-making processes. The Bayesian framework has 

been proposed as a more suitable theoretical framework for representing uncertainties at various 

levels while providing better tools for weighing evidential uncertainty in clinical effectiveness 

assessment processes. 

However, the discussion in the end of this chapter implies that there is no perfect tool for dealing 

with the complicated problem of evaluating evidence for the formulation of reimbursement 

recommendations. Bayesian tools suffer from some theoretical and technical issues and are not 

free of limitations. Nonetheless, the fact that those are imperfect cannot, in and of itself, justify 

the adherence to another problematic practice just because it is the current practice. Limiting 

attention to simple problems in which the degree of uncertainty is low may be an easier path to 

take. Still, it comes at the price of considerable epistemic and distributional costs. 

Recognizing that subjective judgment is an integral part of any inference and that scientific 

evidence alone is never sufficient for establishing an inference should guide us in the normative 

evaluation of potential mechanisms for addressing evidentiary uncertainty in drug 
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reimbursement decisions. As should be evident from the discussion in the first chapter, pieces 

of scientific evidence alone are never sufficient to inform policy, as they are underdetermined 

by our background knowledge. Both the interpretation and the degrees of confidence in the 

results are necessarily anchored in background prior-knowledge. This is true for RCTs as it is 

with other types of evidence. The choice, as Claxton (2001) formulated it, “is not between 

speculation or evidence but between methods that expose the lack of evidence and make 

judgments and speculation explicit or those that leave the judgments and speculation for 

individuals to make implicitly and possibly inconsistently” (page 51; bold added MK). 

Acknowledging the clear advantages of the Bayesian analysis tools, we conclude that the 

Bayesian approach should be utilized to a further extent in formulating clinical effectiveness 

appraisals. However, the disadvantages associated with those tools should not be ignored and 

efforts should be made to minimize their impact and account for them in interpreting the findings 

of the analysis. In this context, clear and transparent presentation of the rationale underlying the 

model assumptions as well as evaluation of their influence on the outcomes using sensitivity 

analysis tools is essential.  

The incorporation of Bayesian decision-theoretic tools as an integral part of health technology 

assessment processes is expected to promote transparency and consistency in decision-making 

and encourage debate and mutual deliberation among various regulatory agencies. 

Consequently, the use of these tools may contribute to the standardization of HTA processes 

across different countries, thereby increasing the coherence of drug regulation policies and 

recommendations for reimbursement in different contexts. In light of the above, successful 

implementation of the Bayesian tools will, hopefully, help healthcare systems better meet patient 

needs and contribute to addressing the significant challenges facing public health systems in the 

current age, for the benefit of the entire population.   
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Conclusion  
The discussion in this thesis has gone some way toward enhancing our understanding of the 

role of RCT evidence in decision-making processes on the public coverage of drugs and 

intricacies associated with it. Recognizing the shortcomings of the current regulatory methods, 

we used the framework of normative decision theory to argue for the incorporation of Bayesian 

thinking into drug reimbursement decision-making processes.  

The discussion in this work implied that the RCT method is characterized by a special epistemic 

power, granting it a unique status in the medical community. However, despite its advantages, 

the RCT method is not a panacea. While its limitations are often overlooked, a more nuanced 

understanding of the epistemic contribution of the RCT method suggests that it cannot be 

ascribed an exclusive, overriding weight; RCT evidence alone is often insufficient to 

substantiate claims about drug efficacy, on the one hand, and evidence from non-RCT sources 

may provide valuable information that cannot be dismissed, on the other. This suggests that a 

more pluralistic approach should be adopted with regard to the constituting elements of clinical 

evidence, by recognizing a broader set of attributes endowing clinical data its evidential force. 

However, this pluralistic notion is not adequately manifested in actual policy processes, as 

indicated by the findings of the retrospective quantitative analysis of reimbursement 

recommendations. Approved drugs with no supporting RCT data are found to be less likely to 

be evaluated within HTA processes. Moreover, in the absence of RCT evidence, non-RCT data 

are seldom perceived as sufficient for supporting effectiveness claims and utilization of this 

type of data is inconsistent from country to country.  

A more in-depth look into the character of the decision problem at stake, using normative 

decision theory, highlights the multidimensional nature of drug reimbursement decisions. 

Recognizing that standard tools are insufficient for addressing the challenges emerging from 

this complex structure, the Bayesian method, while not being free of limitations, has been 

suggested as a more suitable framework for supporting drug reimbursement decision-making 

processes. Such incorporation may promote a more legitimate, transparent, and consistent 

method of decision-making. 

As a final remark, it should be noted that examination of the normative basis for evidence 

assessment processes, as discussed within this thesis with regard to the local context of RCTs, 

is expected to be of increasing importance at a broader level in the coming years. In the past 

decade, medical research has rapidly transformed in two directions. As treatment becomes 
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more personalized, molecular theoretical research is becoming more dominant. The aim of this 

research is to establish medical progression based on mechanistic knowledge at the cellular 

level. At the same time, computational advancement is contributing to the increasing utilization 

of Big Data in the conducting of “non-hypothetical” studies. Those studies present results in 

the form of strong correlations arising from the data set itself, while minimizing the use of 

theoretical knowledge, even at the hypothesis formulation stage.  

These opposite trends are expected to pose serious challenges to medical research and may 

entail modification of the orthodox medical epistemology used for policy formation. 

Formulation of such epistemology would require a better understanding of the functions of 

different types of clinical knowledge in providing evidential support for effectiveness claims 

and the establishment of an adequate framework for integrating them within appraisal 

processes. Such an endeavor would require collaboration among scholars of different 

disciplines, including policymakers, health economists, statisticians, and philosophers, as well 

as others. I hope that our work will further motivate a study of this kind. 
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APPENDICES 

Appendix A: Comparative Review of Healthcare System Structure and Health Technology Assessment in the Five Selected Countries 

Country 

Healthcare System – General 

Characteristics 

Health Technology Assessment 

Organizational Structure Non-clinical Considerations within HTA 
Measures of Cost-

Effectiveness 

Health Insurance 

Model 

Drug 

Reimbursement 

Scheme 

HTA Body 

conducting 

clinical  

effectiveness 

assessment 

Body Making 

Final Decision 

Pre-

selection 

process 

Economic 

Evaluation 

by 

legislation 

Patient’s 

Aspect 

Beside 

Clinical 

Benefit 

Social 
Aspects 

Ethical  

& Legal  

Aspects 

QALY HRQoL 

France 

 

Universal and 

compulsory, 

provided by the 

state. 

 

Drugs covered 

under the Social 

Health Insurance 

are specified in a 

positive list. Rate of 

reimbursement of 

prescription drugs 

may vary by type of 

care and level of 

effectiveness and 

therapeutic value. 

(HAS) 

Haute Autorité de 

Santé 

Health Ministry  

Inclusion in 

refundable list  

UNCAM (Union 

Nationale des 

Caisses 

d’Assurance 

Maladie) 

reimbursement 

rate 

HTA is 

mandatory 

for all EMA 

approved 

drugs 

Yes Yes Yes Yes Yes Yes 

England 

Universal Coverage 

provided by NHS 

England (Single-

Payer) 

Covered drugs are 

specified in both 

negative and 

positive lists. Drugs 

provided in 

hospitalization are 

fully funded, 

outpatient 

prescriptions 

involves co-

payments. 

(NICE) 

National Institute 

of Health and 

Clinical 

Excellence 
(in absent of report 

by NICE, appraisal 

is conducted by 

local clinical 

commission groups) 

National Health 

Services of 

England (NHS 

England) 

Yes, criteria 

explicitly 

defined 

Yes Yes No No Yes Yes 
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Health Insurance 

Model 

Drug 

Reimbursement 

Scheme 

HTA Body 

conducting clinical 

effectiveness 

assessment 

Body Making 

Final Decision 

Pre-selection 

process 

Economic 

Evaluation 

(by 

legislation) 

Patient’s 

Aspect 

Beside 

Clinical 

Benefit 

Social 
Aspects 

Ethical  

& Legal 

Aspects 

QALY HRQoL 

Germany 

Universal health 

insurance which is 

mandatory and 

provided by two 

systems: (1) non-

governmental, non-

for-profit health 

funs (2) private 

health insurance 

(The Bismarck 

Model) 

Drugs with 

unproved added 

benefit: grouped 

and set reference 

price, serving as a 

maximum level of 

reimbursement. 

Drugs with proven 

added benefit 

Sickness Funds 

negotiates a rebate 

on  manufacturer’s 

prices, lowering the 

price below 

reference price. 

(IQWiG) 

The independent 

Institute for 

Quality and 

Efficiency in 

Health Care 

G-BA Federal 

Joint Committee 

 

HTA 

agency does 

not initiate 

appraisal 

but does so 

at the 

request of 

the G-BA 

Yes No No No No Yes 

Canada 

National Health 

Insurance Model 

Universal health 

insurance 

administered by the 

various   provinces 

and territories 

All prescription 

drugs provided in 

hospitals are fully 

covered publicly, 

with outpatient 

coverage varying by 

province or 

territory. 

(CADTH) 

Canadian Agency 

for Drugs and 

Technologies in 

Health  

 

Local bodies in 

each province 

or territory 

Yes 

 criteria 

explicitly 

defined 

Yes Yes Yes No Yes Yes 

Scotland 

Universal coverage 

provided by NHS 

Scotland (single-

Payer), provided by 

nine Health Boards 

Drugs provided in 

hospitalization are 

fully funded, 

outpatient 

prescriptions 

involves co-

payments. 

(SMC) 

Scottish 

Medicines 

Consortium 

National Health 

Services of 

Scotland (NHS 

Scotland) 

Yes 

 no criteria 

explicitly 

defined 

Yes Yes Yes No Yes Yes 

Sources: European Commission (2017). Mapping the HTA Methodologies in EU and Norway. Written by Science & Policy, Author Finn Børlum Kristensen.  The 

Commonwealth Fund Website.  International Health Care System Profiles. https://international.commonwealthfund.org/ 

https://international.commonwealthfund.org/
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Appendix B: Documents Analysis  

Issue NICE (UK) IQWiG (Germany) CDATH (Canada) SMC (Scotland) HAS (France) 

Types of 

Admissible 

Evidence 

 

RCTs,  

Observational Studies 

 

" NICE prefers RCTs that directly 

compare the technology with 1 or 

more relevant comparators." 

RCTs. 

In exceptional 

circumstances only: 

Observational Studies 

All types of Data: 

" Potential sources for informing 

parameter estimates for 

effectiveness (e.g., clinical 

effects, detection, harms) could 

include RCTs, observational 

studies, administrative databases, 

non-comparative studies, or 

expert input. " 

 

Priority: Active control 

RCT  

In the absent of active-

controlled: placebo 

controlled, uncontrolled 

studies),  

Under special 

circumstances: experts’ 

opinion. 

Level I: high powered RCTs 

Level II: low powered RCT, 

comparative observational 

studies 

Level III: Case control studies 

Level IV Retrospective  

studies, Case series, controlled 

data with biased 

 (data considered non-

relevant: Animal studies, 

Experts’ opinion) 

Hierarchy of 

evidence 
Explicit Explicit None Explicit Explicit 

Role of RCT 

Establishing Causal 

Relationship: 

“Randomised controlled trials 

(RCTs) minimise potential 

external influences to identify an 

effect of one or more 

interventions on outcom" 

"RCTs are therefore considered to 

be most appropriate for measures 

of relative treatment effect.” 

Establishing Causal 

Relationship: 

 

“RCTs provide a basic 

precondition for the 

demonstration of 

causality.” 

N/A N/A N/A 

Limitation of RCT 

"The relevance of RCT evidence 

to the appraisal depends on both 
the external and internal validity 

of each trial." 

" However, such evidence may 

not always be available and may 

not be sufficient to quantify the 

effect of treatment over the course 

of the disease." 

“Even if patient groups in 

an RCT differ from 
everyday health care, this 

does not mean the external 

validity of study results 

must be questioned”. 

 

 

"A key issue is the extent to which 

the data obtained from an RCT 
reflect the effectiveness likely to be 

achieved in a real-world setting 

(i.e., the external validity of the 

trial). For the evaluation to be 

relevant to the decision-maker, the 

effects …should reflect the 

effectiveness of the intervention 

rather than its efficacy." 

N/A 

 
N/A 
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Issue NICE (UK) IQWiG (Germany) CDATH (Canada) SMC (Scotland) HAS (France) 

Role of non-RCT 

Complementary:  

"Data from non-randomised and 

non-controlled studies may be 

needed to supplement RCT data." 

Second best:  

“Study types other than 

RCTs are usually not 

suited to demonstrate 

causality. In 

nonrandomized 

comparative studies, as a 

matter of principle 

structural equality of 

groups cannot be assumed. 

They therefore always 

provide a potentially 

biased result and mostly 

cannot answer with 

sufficient certainty the 

relevant question as to 

whether a difference 

observed is caused by the 

intervention tested. The 

use of non-randomized 

studies as proof of the 

causality of an intervention 

therefore requires 

particular justification or 

specific preconditions and 

special demands on 

quality” 

Complementary:  

"Critical to making a judgment 

about incorporating real-world 

factors into the analysis is the 

strength of the available data 

linking potential intervention 

effect-modifying factors with 

important patient outcomes. 

Researchers should present these 

linkages in a transparent manner 

and provide justification. " 

Second best:  

"If active-controlled 

studies are not available, 

details of placebo-

controlled or 

uncontrolled studies that 

provide evidence of the 

clinical benefits of the 

medicine in its licensed 

dose within the 

indication(s) under 

review should be 

included… Where data 

from studies are 

insufficient to provide 

values for relevant 

variables, and such 

values can be obtained 

from expert opinion, then 

SMC will consider this 

as a valid source of 

evidence." 

 

Complementary:  

"Comparative observational 

studies might be used in the 

case of added value, in terms 

of relevance or bias 

limitation" 

 

Sources: NICE. Guide to the methods of technology appraisal 2013, published April 2013. https://www.nice.org.uk/process/pmg9/chapter/evidence , NICE. Single technology appraisal: 

User guide for company evidence submission template. https://www.nice.org.uk/process/pmg24/chapter/clinical-effectiveness published January 2015, updated April 2017; IQWiG. General 

Method. Version 5.0, published July 2017 ; SMC. Guidance to submitting companies for completion of New Product Assessment Form (NPAF). Published June 2019. 

https://www.scottishmedicines.org.uk/media/4527/20190626-guidance-on-npaf.pdf ; CDATH. Guidelines for the Economic Evaluation of Health Technologies: Canada. 4th edition, 

published March 2017. ; HAS. Haute Autorité de Santé. General Method For Assessing Health Technologies. https://www.has-

sante.fr/upload/docs/application/pdf/general_method_eval_techno.pdf published December 2007. 

  

https://www.nice.org.uk/process/pmg9/chapter/evidence
https://www.nice.org.uk/process/pmg24/chapter/clinical-effectiveness
https://www.scottishmedicines.org.uk/media/4527/20190626-guidance-on-npaf.pdf
https://www.has-sante.fr/upload/docs/application/pdf/general_method_eval_techno.pdf
https://www.has-sante.fr/upload/docs/application/pdf/general_method_eval_techno.pdf
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Appendix C: Categorization of the features of pivotal studies 

Data Sources: 

Market Authorization Reports: 

EMA: Main Study” component of the “Clinical Efficacy” section in the “EMA Public Assessment Report (EPAR)”. 

FDA:  
“Clinical/Statistical-Efficacy” component (Section 7) in the “Summary Review” report, or the “Statistical 

Evaluation” component in the “Statistical Review(s)” report.   

HTA Appraisals: 

NICE: “Clinical evidence” component in the “Community discussion” section (section 3) of the Technology appraisal 

guidance. 

HAS:  
“Clinical Data” section in the english version of the “Brief Summary of the Transparency Committee Opinion” 

report. 

IQWIG:  

 

Assessment section (section 2) in the English version of the “Addendum to Commission A16-0” report or the 

“Extract of dossier” report. 

SMC: “Why has SMC said this?” component in the public summary report (“Decision Explained”) 

CADTH: Summary of pERC deliberation” component of the “Expert Review Committee - initial recommendation” reports.   

Complementary Data: 

 US National Library of medicine ClinicalTrial.gov at (https://clinicaltrials.gov/), search by study name. When necessary, ClinicalTrial.gov 

Archive site was used to trace the relevant study record according to the date of the report.  

 PubMed (US National Library of Medicine) at https://www.ncbi.nlm.nih.gov/pubmed/ search by keywords.  

 EU Clinical Trials Register at https://www.clinicaltrialsregister.eu/, search by study name. 

https://clinicaltrials.gov/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.clinicaltrialsregister.eu/
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Appendix D: List of Drugs Granted Market Authorization by either EMA or FDA Based on Non-RCT pivotal trial 

Medicine name Therapeutic Area 
Accelerated 

Assessment 

Orphan 

Medicine 

Marketing 

Authorization 

Year 

Trial No. 
(ClinicalTrials.gov 

Identifier, when applicable)  

Phase 

Lumark Metastatic Prostate Cancer no no 2015 NCT00195039 2 

Zykadia Carcinoma, Non-Small-Cell Lung no no 2015 NCT01283516 1 

Strensiq Hypophosphatasia no yes 2015 NCT00952484 2 

Elocta Hemophilia A no no 2015 NCT01181128 3 

Blincyto Precursor Cell Lymphoblastic Leukemia-Lymphoma no yes 2015 NCT01466179 2 

Praxbind Hemorrhage yes no 2015 NCT02104947 3 

Obizur Hemophilia A no no 2015 NCT01178294 2/3 

Kolbam  Metabolism, Inborn Errors no yes 2015 NCT00007020 3 

Vistogard overdose of capecitabine or fluorouracil yes yes 2015 401.10.001 3 

Venclyxto Leukemia, Lymphocytic, Chronic, B-Cell no no 2016  NCT01889186 2 

Kovaltry Hemophilia A no no 2016 NCT01311648 3 

trientine Hemophilia B no yes 2016 NCT01361126  1/2 

Briviact  Epilepsy no no 2016 NCT00150800 3 

Sialanar Sialorrhea no no 2016 NCT00425087. 3 

Alprolix Hemophilia B no yes 2016 NCT01027364 3 

Coagadex Factor X Deficiency yes yes 2016 NCT00930176 3 

Tagrisso Carcinoma, Non-Small-Cell Lung yes no 2016 NCT02094261 2 

Strimvelis Severe Combined Immunodeficiency no yes 2016 NCT00598481 2 

Zalmoxis 
Hematopoietic Stem Cell Transplantation, Graft vs Host 

Disease 
no yes 2016 NCT00423124 1/2 

Idelvion hemophilia B no no 2016 NCT01496274 2/3 

Venclexta chronic lymphocytic leukemia  yes yes 2016 NCT01889186 2 
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Medicine name Therapeutic Area 
Accelerated 

Assessment 

Orphan 

Medicine 

Marketing 

Authorization 

Year 

Trial No. 
(ClinicalTrials.gov 

Identifier, when applicable) 

 

Phase 

Defitelio  hepatic veno-occlusive disease yes yes 2016 NCT00358501 3 

Tecentriq Carcinoma, Transitional Cell, Carcinoma, Non-Small-Cell Lung no no 2016 
NCT02951767 (Cohort 1), 

NCT02108652 (Cohort 2) 
2 

Afstyla Hemophilia A no no 2017 NCT01486927 2/3 

Cuprior Hepatolenticular Degeneration no no 2017 "Lariboisière study" NA 

Qarziba  Neuroblastoma no yes 2017 APN311-303 NA 

Bavencio Neuroendocrine Tumors no yes 2017 100070-003  2 

Brineura Neuronal Ceroid-Lipofuscinoses yes yes 2017 NCT01907087 1/2 

Zubsolv Opioid-Related Disorders no no 2017 NCT01903005 3/4 

Alecensa Carcinoma, Non-Small-Cell Lung no no 2017 NCT01871805 1/2 

Chenodeoxycholic 

acid Leadiant  
Xanthomatosis, Cerebrotendinous, Metabolism, Inborn Errors no yes 2017 CDCA-STUK-15-001 NA 

pembrolizumab Carcinoma, Non-Small-Cell Lung no no 2017 NCT02335424 2 

Keytruda  measurable urothelial carcinoma no yes 2017  NCT02335424 2 

Bavencio  Neuroendocrine Tumors na yes 2017 NCT02155647 2 

Imbruvica  Waldenström’s Macroglobulinemia yes yes 2017 NCT01614821 2 

Imbruvica  marginal zone lymphoma yes yes 2017 NCT01236391 2 

Aliqopa relapsed follicular lymphoma (FL) yes yes 2017 NCT 01660451 2 

Calquence mantle cell lymphoma (MCL) yes yes 2017 NCT02213926 2 

IDHIFA  elapsed or refractory acute myeloid leukemia (AML) yes yes 2017 NCT01915498 1/2 

Rebinyn hemophilia B  no no 2017 NCT01333111 3 

Alkindi Adrenal Insufficiency no no 2018 NCT02720952 2 

Adynovi Hemophilia A no no 2018 NCT01736475 2/3 

Yescarta Lymphoma, Follicular, Lymphoma, Large B-Cell, Diffuse no yes 2018 NCT02348216 2 

Rubraca Ovarian Neoplasms no no 2018 NCT01891344 2 

Myalepta Lipodystrophy, Familial Partial no yes 2018 NIH 991265 2 
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Medicine name Therapeutic Area 
Accelerated 

Assessment 

Orphan 

Medicine 

Marketing 

Authorization 

Year 

Trial No. 
(ClinicalTrials.gov 

Identifier, when applicable) 

 

Phase 

Kymriah 
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma, 

Lymphoma, Large B-Cell, Diffuse 
no yes 2018 NCT02435849 2 

Keytruda head and neck cancer  yes no 2018 NCT01848834 1 

Libtayo metastatic cutaneous squamous cell carcinoma (CSCC) no no 2018 NCT02760498 2 

Revcovi 
adenosine deaminase severe combined immune deficiency 

(ADA-SCID) 
no yes 2018 NCT 01420627 3 

Copiktra  refractory chronic lymphocytic leukemia yes yes 2018 NCT01882803 2 

Elzonris  blastic plasmacytoid dendritic cell neoplasm (BPDCN)  no yes 2018 NCT 02113982 1/2 

Lumoxiti relapsed or refractory hairy cell leukemia no yes 2018 NCT01829711 2 

Tibsovo  relapsed or refractory acute myeloid leukemia (AML) yes yes 2018 NCT02074839 1 

Gamifant primary hemophagocytic lymphohistiocytosis (HLH)  no yes 2018 NCT01818492 2/3 

Trogarzo  immunodeficiency virus type 1 (HIV-1) no yes 2018 NCT02475629 3 

Annovera contraceptives. yes yes 2018 NCT00263341 3 

Lorbrena metastatic non-small cell lung cancer yes yes 2018 NCT01970865 1/2 
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Appendix E : Specification of the Econometric Models 

Dependent variable Model Model No. Regression* 

The probability of being evaluated 

𝑌𝑖 = {
0   𝑁𝑜𝑡  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑
1            𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑

 

 

Mixed-
effects 
logistic 

regression 

 

(1)  𝑃(𝑌𝑖 = 1) = 𝐹 [𝛽1(𝑅𝐶𝑇𝑡𝑜
)

𝑖
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦𝑗 )

𝑖
+ 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(2)  
𝑃(𝑌𝑖 = 1) = 𝐹 [𝛽1(𝑅𝐶𝑇𝑡𝑜

)
𝑖

+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦𝑗 )
𝑖

+ 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(3)  
𝑃(𝑌𝑖, = 1) = 𝐹[𝛽1(𝑅𝐶𝑇𝑡0

)
𝑖

+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦𝑗  )
𝑖,

+ 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝛽6 (𝐻𝑇𝐴𝐴𝑔𝑒𝑛𝑐𝑦𝑗
 ×  𝑅𝐶𝑇𝑡𝑜

)
𝑖

+ 𝑢𝑖 ∙ 𝑍𝑖 +  𝜀𝑖,𝑗] 

The probability of obtaining favorable reimbursement recommendation 

𝑌𝑖 = {
0    𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒
1         𝑓𝑎𝑣𝑟𝑜𝑎𝑏𝑙𝑒

 

 

Mixed-
effects 
logistic 

regression 

 

(4)  𝑃(𝑌𝑖 = 1 | 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1) = 𝐹 [𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦𝑗 )

𝑖
+ 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(5)  

𝑃(𝑌𝑖 = 1 |  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1)

= 𝐹 [𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦)𝑖 + 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(6)  

𝑃(𝑌𝑖 = 1| 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1)

= 𝐹[𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦 )𝑖,𝑗 + 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝛽6 (𝐻𝑇𝐴𝐴𝑔𝑒𝑛𝑐𝑦𝑗
 ×  𝑅𝐶𝑇𝑡1

)
𝑖

+ 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

The probability of obtaining specific reimbursement recommendation 

𝑌𝑖 = {
1      𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
2    𝑅𝑒𝑠𝑟𝑖𝑐𝑡𝑒𝑑 
3        𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 

 

𝑘 = {1,2} 

Mixed-
effects ologit 

regression 

 

(7)  𝑃(𝑌𝑖 > 𝑘 | 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1) = 𝐹∗ [𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦𝑗 )

𝑖
+ 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(8)  

𝑃(𝑌𝑖 > 𝑘|  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1)

= 𝐹∗ [𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦)𝑖 + 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝑢𝑖 ∙ 𝑍𝑖 + 𝜀𝑖,𝑗] 

(9)  

𝑃(𝑌𝑖 > 𝑘 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = 1)

= 𝐹∗[𝛽1(𝑅𝐶𝑇𝑡1
)

𝑖,𝑗
+ 𝛽2(𝐻𝑇𝐴_𝐴𝑔𝑒𝑛𝑐𝑦 )𝑖,𝑗 + 𝛽3(𝑂𝑛𝑐𝑜𝑙𝑜𝑔𝑦)𝑖 + 𝛽4(𝑂𝑟𝑝ℎ𝑎𝑛)𝑖

+ 𝛽5(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + 𝛽6 (𝐻𝑇𝐴𝐴𝑔𝑒𝑛𝑐𝑦𝑗
 ×  𝑅𝐶𝑇𝑡1

)
𝑖

+ 𝑢𝑖 ∙ 𝑍𝑖) + 𝜀𝑖,𝑗] 

* Where  𝑖 is index for the drug, 𝑗 is index for the HTA agency, 𝑢𝑖 is random drug-intercept, F and 𝐹∗ are logistic functions of the following type:  
1

1+exp(𝛴𝑖𝛽𝑖𝑥𝑖+𝜀𝑖)
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